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Resumen

Esta tesis presenta
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1 Introducción

1.1. Introducción del modelo de Langevin y su aplicación a
terremotos

El modelo de Langevin fue propuesto por Paul Langevin en 1908 para describir el
movimiento browniano de partículas suspendidas en un fluido. Este modelo captura la
dinámica de una partícula bajo la influencia de una fuerza determinista (como la fricción)
y una fuerza aleatoria (ruido blanco gaussiano), y se expresa mediante una ecuación
diferencial estocástica de la forma:

𝑑𝑣(𝑡) = −𝛾𝑣(𝑡) 𝑑𝑡 +
√

2𝐷 𝑑𝑊(𝑡) (1.1)

donde de Ecuación 1.1:

𝑣(𝑡): velocidad de la partícula,
𝛾: coeficiente de fricción,
𝐷: coeficiente de difusión (intensidad del ruido térmico),
𝑊(𝑡): movimiento browniano estándar.

Con el tiempo, este modelo fue generalizado para describir sistemas que combinan
comportamientos deterministas con fluctuaciones aleatorias, incluyendo fenómenos físicos,
biológicos, químicos y financieros.

En el contexto geofísico, el modelo de Langevin se ha extendido para modelar la dinámica
de fallas sísmicas. Para representar eventos sísmicos abruptos —como rupturas en la
corteza terrestre— se incorpora un término adicional de saltos, modelados mediante un
proceso de Poisson o, más generalmente, un proceso de Lévy. El modelo extendido es:

𝑑𝑣(𝑡) = [−𝛾𝑣(𝑡) + 𝐹ext(𝑡)] 𝑑𝑡 +
√

2𝐷 𝑑𝑊(𝑡) + 𝑑𝐽(𝑡),

donde:

(𝐹ext(𝑡)): fuerza externa acumulada, por ejemplo, por tectónica de placas,
(𝐽(𝑡)): proceso de saltos, que representa eventos súbitos (rupturas sísmicas),
El resto de símbolos mantienen su significado anterior.
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Una formulación típica para los saltos es:

𝐽(𝑡) =
𝑁(𝑡)

∑
𝑖=1

𝑌𝑖,

donde:

(𝑁(𝑡)) es un proceso de Poisson de tasa (𝜆 > 0),
(𝑌𝑖) representa la magnitud del i-ésimo salto (aleatoria, por ejemplo, con distribución
exponencial o normal truncada).

Este modelo se denomina Ecuación de Langevin con saltos y pertenece a la clase de
ecuaciones diferenciales estocásticas impulsadas por procesos de Lévy.

Su aplicación en geofísica permite modelar:

El movimiento gradual de una falla mediante la fricción y ruido térmico,
La ocurrencia de microtemblores,
La irrupción de terremotos mayores como saltos discontinuos.

Este enfoque ofrece una base matemática para la simulación y el análisis estadístico de
secuencias sísmicas, incluyendo la estimación de probabilidades de ocurrencia, clasificación
de eventos y simulación de trayectorias dinámicas realistas.
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2 Preliminares

2.1. Análisis Real y Funcional (Base Analítica).

Definición 2.1. Espacio métrico
Llamamos espacio métrico al par (𝑋, 𝑑), donde 𝑋 es un conjunto no vacío y 𝑑 ∶ 𝑋 × 𝑋 →
[0, ∞) es una función (llamada métrica) que satisface, para todo 𝑥, 𝑦, 𝑧 ∈ 𝑋:

𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦,

𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥),

𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).

Definición 2.2. Sucesión de Cauchy.
Una sucesión (𝑥𝑛)𝑛∈ℕ en un espacio métrico (𝑋, 𝑑) es una sucesión de Cauchy si para
todo 𝜀 > 0, existe 𝑁 ∈ ℕ tal que

𝑚, 𝑛 ≥ 𝑁 ⟹ 𝑑(𝑥𝑚, 𝑥𝑛) < 𝜀.

Definición 2.3. Espacio métrico completo
Un espacio métrico (𝑋, 𝑑) se dice completo si toda sucesión de Cauchy en 𝑋 converge a
un límite en 𝑋.

El espacio ℝ con la métrica 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| es completo.

Definición 2.4. 𝜎-álgebra de Borel.
La 𝜎-álgebra de Borel en ℝ, denotada ℬ(ℝ), es la 𝜎-álgebra generada por los intervalos
abiertos de ℝ.

Definición 2.5. Función Borel Medible
Una función 𝑓 ∶ ℝ → ℝ es Borel-medible si para todo 𝐵 ∈ ℬ(ℝ), se tiene que 𝑓−1(𝐵) ∈
ℬ(ℝ).

Teorema 2.1. Toda función continua 𝑓 ∶ ℝ → ℝ es Borel-medible.

Demostración. Si 𝑓 es continua, la preimagen de cualquier conjunto abierto es abierta.
Como los abiertos generan ℬ(ℝ) y la preimagen conmuta con uniones, intersecciones
numerables y complementos, se sigue que 𝑓−1(𝐵) ∈ ℬ(ℝ) para todo 𝐵 ∈ ℬ(ℝ).
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2.2. Espacios 𝐿2 y convergencia.

Definición 2.6. Sea (Ω, ℱ, ℙ) un espacio de probabilidad. EL espacio 𝐿2(Ω, ℱ, ℙ) se
define como

𝐿2 = {𝑋 ∶ Ω → ℝ ∣ 𝑋 es ℱ-medible y 𝔼[|𝑋|2] < ∞} .

Definición 2.7. Para 𝑋 ∈ 𝐿2, su norma se define como

‖𝑋‖𝐿2 = (𝔼[|𝑋|2])1/2 .

Definición 2.8. Una sucesión (𝑋𝑛)𝑛∈ℕ ⊂ 𝐿2 converge en 𝐿2 a 𝑋 ∈ 𝐿2 si

lím
𝑛→∞

‖𝑋𝑛 − 𝑋‖𝐿2 = 0,

es decir, lím
𝑛→∞

𝔼[|𝑋𝑛 − 𝑋|2] = 0.

2.3. Espacios de Banach

Definición 2.9. Un espacio de Banach es un espacio vectorial normado (𝑋, ‖ ⋅ ‖) que
es completo con respecto a la métrica inducida por la norma, es decir, toda sucesión de
Cauchy en 𝑋 converge en 𝑋.

El espacio 𝐿2(Ω, ℱ, ℙ) es un espacio de Banach (de hecho, un espacio de Hilbert).

Definición 2.10. Una sucesión (𝑥𝑛)𝑛∈ℕ en un espacio normado (𝑋, ‖ ⋅ ‖) es de Cauchy
si para todo 𝜀 > 0, existe 𝑁 ∈ ℕ tal que

𝑚, 𝑛 ≥ 𝑁 ⟹ ‖𝑥𝑚 − 𝑥𝑛‖ < 𝜀.

En ℝ, esto se reduce a: (𝑥𝑛) es de Cauchy si |𝑥𝑚 − 𝑥𝑛| < 𝜀 para 𝑚, 𝑛 suficientemente
grandes.
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2.4. Desigualdades

Proposición 2.1. Para cualesquiera 𝑎1, … , 𝑎𝑛 ∈ ℝ,

(
𝑛

∑
𝑖=1

𝑎𝑖)
2

≤ 𝑛
𝑛

∑
𝑖=1

𝑎2
𝑖 .

En particular, para 𝑛 = 3,

(𝑎 + 𝑏 + 𝑐)2 ≤ 3(𝑎2 + 𝑏2 + 𝑐2).

Proposición 2.2. Sean 𝑓, 𝑔 ∶ [0, 𝑇 ] → ℝ funciones medibles tales que 𝑓, 𝑔 ∈ 𝐿2([0, 𝑇 ]).
Entonces

∣∫
𝑇

0
𝑓(𝑠)𝑔(𝑠) 𝑑𝑠∣ ≤ (∫

𝑇

0
|𝑓(𝑠)|2 𝑑𝑠)

1/2

(∫
𝑇

0
|𝑔(𝑠)|2 𝑑𝑠)

1/2

.

Corolario 2.1. Si 𝑔 ≡ 1, entonces para todo 𝑡 ∈ [0, 𝑇 ],

(∫
𝑡

0
𝑓(𝑠) 𝑑𝑠)

2

≤ 𝑡 ∫
𝑡

0
|𝑓(𝑠)|2 𝑑𝑠.
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3 Objetivos

3.1. Los objetivos de este proyecto se estarán afinando dentro
de las proximas semanas.

9



4 Existencia y unicidad fuerte

Teorema 4.1. Sea (Ω, ℱ, (ℱ𝑡)𝑡≥0, ℙ) un espacio de probabilidad filtrado que satisface
las hipótesis usuales. Consideremos la ecuación diferencial estocástica modificada (sin
saltos grandes):

𝑑𝑍(𝑡) = 𝑏(𝑍(𝑡−)) 𝑑𝑡
+ 𝜎(𝑍(𝑡−)) 𝑑𝐵(𝑡)

+ ∫
|𝑥|<𝑐

𝐹(𝑍(𝑡−), 𝑥) 𝑁(𝑑𝑡, 𝑑𝑥), 𝑡 ≥ 0,
(4.1)

con condición inicial 𝑍(0) = 𝑍0, donde 𝐵(𝑡) es un movimiento browniano estándar
unidimensional (𝑟 = 1); 𝑁(𝑑𝑡, 𝑑𝑥) es una medida aleatoria de Poisson definida en
ℝ+ × (ℝ ∖ {0}) con medida de intensidad 𝜈(𝑑𝑥); 𝑁(𝑑𝑡, 𝑑𝑥) = 𝑁(𝑑𝑡, 𝑑𝑥) − 𝜈(𝑑𝑥) 𝑑𝑡 denota
la correspondiente medida compensada; 𝑐 ∈ (0, ∞] es un umbral fijo que separa los saltos
pequeños de los grandes; y 𝑍0 es una variable aleatoria ℱ0-medible, independiente del
ruido estocástico.

Supongamos que los coeficientes 𝑏 ∶ ℝ → ℝ, 𝜎 ∶ ℝ → ℝ y 𝐹 ∶ ℝ × ℝ → ℝ son funciones
medibles que satisfacen las siguientes condiciones:

4.0.0.1. (C1) Condición de Lipschitz:

Existe una constante 𝐾1 > 0 tal que, para todo 𝑦1, 𝑦2 ∈ ℝ,

|𝑏(𝑦1) − 𝑏(𝑦2)|2 + |𝜎(𝑦1) − 𝜎(𝑦2)|2

+ ∫
|𝑥|<𝑐

|𝐹 (𝑦1, 𝑥) − 𝐹(𝑦2, 𝑥)|2 𝜈(𝑑𝑥)

≤ 𝐾1|𝑦1 − 𝑦2|2.

(4.2)
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4.0.0.2. (C2) Condición de crecimiento lineal:

Existe una constante 𝐾2 > 0 tal que, para todo 𝑦 ∈ ℝ,

|𝑏(𝑦)|2 + |𝜎(𝑦)|2 + ∫
|𝑥|<𝑐

|𝐹 (𝑦, 𝑥)|2 𝜈(𝑑𝑥) ≤ 𝐾2(1 + |𝑦|2). (4.3)

Bajo las hipótesis anteriores, existe una única solución fuerte 𝑍 = (𝑍(𝑡))𝑡≥0 de la ecuación
(Ecuación 4.1) tal que:

𝑍 es un proceso adaptado y cádlág (continuo por la derecha con límites por la
izquierda),
La solución es única casi seguramente, esto es, si (𝑍′) es otra solución, entonces

ℙ(𝑍(𝑡) = 𝑍′(𝑡) para todo 𝑡 ≥ 0) = 1. (4.4)

Demostración. Queremos ver la existencia de una solución 𝑍 = (𝑍(𝑡))𝑡≥0 para la ecuación
(Ecuación 4.1) con condición inicial 𝑍(0) = 𝑍0. Bajo las hipótesis (Ecuación 4.2) y
(Ecuación 4.3) para los coeficientes 𝑏, 𝜎 y 𝐹. Analizaremos primero el caso cuando
𝔼[|𝑍0|2] < ∞. Dado que la ecuación estocástica de nuestro caso posee un movimiento
browniano 𝐵, es decir, ruido estocástico y una medida de Poisson compensada, dada por
𝑁, para esto utilizaremos la iteración de Picard construyendo una sucesión de procesos
estocásticos a partir de la condición inicial. Definiendo la suceción de la siguiente forma:

𝑍0(𝑡) ∶= 𝑍0, ∀𝑡 ≥ 0.

Para 𝑛 ≥ 1

𝑍𝑛+1(𝑡) ∶= 𝑍0 + ∫
𝑡

0
𝑏(𝑍𝑛(𝑠−))𝑑𝑠 + ∫

𝑡

0
𝜎(𝑍(𝑠−))𝑑𝐵(𝑠)

+ ∫
𝑡

0
∫

|𝑥|<𝑐
𝐹(𝑍𝑛(𝑠−), 𝑥)𝑁(𝑑𝑠, 𝑑𝑥).

Demostraremos que el proceso 𝑍𝑛 es un proceso adaptado y con trayectorias Cádlág.
Consideremos la diferencia 𝑍1(𝑡) − 𝑍0(𝑡). Por la iteración de Picard tenemos:

𝑍1(𝑡) = 𝑍0(𝑡) + ∫
𝑡

0
𝑏(𝑍0(𝑠−))𝑑𝑠 + ∫

𝑡

0
𝜎(𝑍0(𝑠−))

+ ∫
𝑡

0
∫

|𝑥|<𝑐
𝐹(𝑍0(𝑠−), 𝑥)𝑁(𝑑𝑠, 𝑑𝑥).

Dado que 𝑍0(𝑡) = 𝑍0 para todo 𝑡 ≥ 0, entonces,
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𝑍1(𝑡) − 𝑍0 = ∫
𝑡

0
𝑏(𝑍0)𝑑𝑠 + ∫

𝑡

0
𝜎(𝑍0)𝑑𝐵(𝑠)

+ ∫
𝑡

0
∫

|𝑥|<𝑐
𝐹(𝑍0, 𝑥)𝑁(𝑑𝑠, 𝑑𝑥).

Considerando la desigualdad

(𝑎 + 𝑏 + 𝑐)2 ≤ 3(𝑎2 + 𝑏2 + 𝑐2). (4.5)

Tomando valor absoulto y elevando al cuadrado la expreción anterior tenemos que

|𝑍1(𝑡) − 𝑍0|2 = ∣ ∫
𝑡

0
𝑏(𝑍0) 𝑑𝑠 + ∫

𝑡

0
𝜎(𝑍0) 𝑑𝐵(𝑠)

+ ∫
𝑡

0
∫

|𝑥|<𝑐
𝐹(𝑍0, 𝑥) 𝑁(𝑑𝑠, 𝑑𝑥)∣

2

≤ 3( (∫
𝑡

0
𝑏(𝑍0) 𝑑𝑠)

2

+ (∫
𝑡

0
𝜎(𝑍0) 𝑑𝐵(𝑠))

2

+ (∫
𝑡

0
∫

|𝑥|<𝑐
𝐹(𝑍0, 𝑥) 𝑁(𝑑𝑠, 𝑑𝑥))

2

).

Para controlar de manera uniforme en todo el intervalo [0, 𝑡] tomamos el supremo sobre
todo el intervalo, además usando propiedades del supremos podemos obtener

sup
0≤𝑠≤𝑡

|𝑍1(𝑠) − 𝑍0|2 ≤ sup
0≤𝑠≤𝑡

(3( (∫
𝑠

0
𝑏(𝑍0) 𝑑𝑠)

2

+ (∫
𝑠

0
𝜎(𝑍0) 𝑑𝐵(𝑠))

2

+ (∫
𝑠

0
∫

|𝑥|<𝑐
𝐹(𝑍0, 𝑥) 𝑁(𝑑𝑠, 𝑑𝑥))

2

))

= 3( sup
0≤𝑠≤𝑡

(∫
𝑠

0
𝑏(𝑍0) 𝑑𝑠)

2

+ sup
0≤𝑠≤𝑡

(∫
𝑠

0
𝜎(𝑍0) 𝑑𝐵(𝑠))

2

+ sup
0≤𝑠≤𝑡

(∫
𝑠

0
∫

|𝑥|<𝑐
𝐹(𝑍0, 𝑥) 𝑁(𝑑𝑠, 𝑑𝑥))

2

).

Tomando valor esperado de ambos lado y usando la linealidad, tenemos que
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𝔼[ sup
0≤𝑠≤𝑡

|𝑍1(𝑠) − 𝑍0|2] ≤ 𝔼[3( sup
0≤𝑠≤𝑡

(∫
𝑠

0
𝑏(𝑍0) 𝑑𝑠)

2

+ sup
0≤𝑠≤𝑡

(∫
𝑠

0
𝜎(𝑍0) 𝑑𝐵(𝑠))

2

+ sup
0≤𝑠≤𝑡

(∫
𝑠

0
∫

|𝑥|<𝑐
𝐹(𝑍0, 𝑥) 𝑁(𝑑𝑠, 𝑑𝑥))

2

)]

= 3(𝔼[ sup
0≤𝑠≤𝑡

(∫
𝑠

0
𝑏(𝑍0) 𝑑𝑠)

2

]

+ 𝔼[ sup
0≤𝑠≤𝑡

(∫
𝑠

0
𝜎(𝑍0) 𝑑𝐵(𝑠))

2

]

+ 𝔼[ sup
0≤𝑠≤𝑡

(∫
𝑠

0
∫

|𝑥|<𝑐
𝐹(𝑍0, 𝑥) 𝑁(𝑑𝑠, 𝑑𝑥))

2

]).

(4.6)

Trabajaremos término por termino; así notemos que la siguiente integral es de Lebesgue

∫
𝑠

0
𝑏(𝑧0)𝑑𝑢 = 𝑏(𝑧0) ∫

𝑠

0
𝑑𝑢 = 𝑏(𝑧0) ⋅ 𝑠

Por lo tanto

sup
0≤𝑠≤𝑡

( ∫
𝑠

0
𝑏(𝑍0)𝑑𝑢)

2

= sup
0≤𝑠≤𝑡

(𝑏(𝑍0) ⋅ 𝑠)2 = sup
0≤𝑠≤𝑡

𝑏(𝑍0)2 ⋅ 𝑠2 = 𝑏(𝑍0)2 ⋅ 𝑡2.

Consideremos ahora el proceso

𝑀(𝑠) ∶= ∫
𝑠

0
𝜎(𝑍0)𝑑𝐵(𝑢). (4.7)

Afirmamos que dicho proceso es una martingala, pues al ser 𝑍0 constante esto implica
que 𝜎(𝑍0) no dependa de 𝑢. Dado que 𝑍0 es ℱ0-medible, entonces 𝜎(𝑍0) también lo es,
más aún, es ℱ𝑢-medible para toda 𝑢 ≥ 0. Por lo tanto el termino a integrar del proceso
𝑀(𝑠), el cuál es una integral de Itô, es adaptado. Por hipotésis, de la condición (C2),
podemos afirmar que

𝔼[|𝜎(𝑍0)|2] ≤ 𝐾2(1 + 𝔼[|𝑍0|2]) ≤ ∞.
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Esto pues obteniendo el valor esperado de (Ecuación 4.3) , tomando a 𝑦 = 𝑍0 tenemos

𝔼[|𝜎(𝑍0)|2] ≤ 𝔼[|𝑏(𝑍0)|2 + |𝜎(𝑍0)|2 + ∫
|𝑥|<𝑐

|𝐹 (𝑍0, 𝑥)|2𝜈(𝑑𝑥)]

≤ 𝔼[𝐾2(1 + |𝑍0|2)]
= 𝐾2𝔼[1 + |𝑍0|2]
= 𝐾2(1 + 𝔼[|𝑍0|2]).

(4.8)

Por lo tanto, el proceso 𝑀(𝑠) es una martingala. Así, usando la desigualdad maximal de
Doob, tenemos que:

𝔼[ sup
0≤𝑠≤𝑡

|𝑀(𝑠)|2] ≤ 4𝔼[|𝑀(𝑡)|2].

De la isometría de Itô y por el teorema de Fubini

𝔼[ sup
0≤𝑠≤𝑡

|𝑀(𝑠)|2] ≤ 4𝔼[|𝑀(𝑡)|2]

= 4𝔼[ ∫
𝑡

0
|𝜎(𝑍0)|2𝑑𝑠]

= 4 ∫
𝑡

0
𝔼[|𝜎(𝑍0)|2]𝑑𝑠

= 4𝔼[|𝜎(𝑍0)|2] ∫
𝑡

0
𝑑𝑠

= 4𝑡𝔼[|𝜎(𝑍0)|2].

De manera análoga, para el termino

𝑊(𝑠) ∶= ∫
𝑠

0
∫

|𝑥|<𝑐
𝐹(𝑍0, 𝑥)𝑁(𝑑𝑢, 𝑑𝑥).

Podemos afirmar que es una martingala. Usando la isometría de Itô, desigualdad maximal
de Doob y por el teorema de Fubini
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𝔼[ sup
0≤𝑠≤𝑡

|𝑊(𝑠)|2] ≤ 4𝔼[|𝑊(𝑡)|2]

= 4 ∫
𝑡

0
∫

|𝑥|<𝑐
𝔼[|𝐹 (𝑍0, 𝑥)|2]𝜈(𝑑𝑥)𝑑𝑠

= 4𝑡 ∫
|𝑥|<𝑐

𝔼[|𝐹 (𝑍0, 𝑥)|2]𝜈(𝑑𝑥).

Así, de la igualdad (Ecuación 4.6) tenemos

𝔼[ sup
0≤𝑠≤𝑡

|𝑍1(𝑠) − 𝑍0|2] ≤ 3(𝔼[ sup
0≤𝑠≤𝑡

(∫
𝑠

0
𝑏(𝑍0) 𝑑𝑠)

2

]

+ 𝔼[ sup
0≤𝑠≤𝑡

(∫
𝑠

0
𝜎(𝑍0) 𝑑𝐵(𝑠))

2

]

+ 𝔼[ sup
0≤𝑠≤𝑡

(∫
𝑠

0
∫

|𝑥|<𝑐
𝐹(𝑍0, 𝑥) 𝑁(𝑑𝑠, 𝑑𝑥))

2

])

≤ 3(𝑡2𝔼[|𝑏(𝑍0)|2] + 4𝑡𝔼[|𝜎(𝑍0)|2]

+ 4𝑡 ∫
|𝑥|<𝑐

𝔼[|𝐹 (𝑍0, 𝑥)|2]𝜈(𝑑𝑥))

= 3𝑡2𝔼[|𝑏(𝑍0)|2] + 12𝑡𝔼[|𝜎(𝑍0)|2]

+ 12𝑡 ∫
|𝑥|<𝑐

𝔼[|𝐹 (𝑍0, 𝑥)|2]𝜈(𝑑𝑥).

(4.9)

Notemos para los terminos en común 3𝑡2 y 12𝑡 podemos definir la variable 𝐶1(𝑡) ∶=
máx {3𝑡, 12}, de aquí

3𝑡2 = 3𝑡 ⋅ 𝑡 ≤ máx {3𝑡, 12} ⋅ 𝑡 = 𝐶1(𝑡) ⋅ 𝑡.
12𝑡 = 12 ⋅ 𝑡 ≤ máx {3𝑡, 12} ⋅ 𝑡 = 𝐶1(𝑡) ⋅ 𝑡.

Por lo tanto, (Ecuación 4.9) queda de la forma
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𝔼[ sup
0≤𝑠≤𝑡

|𝑍1(𝑠) − 𝑍0|2] ≤ 3𝑡2𝔼[|𝑏(𝑍0)|2] + 12𝑡𝔼[|𝜎(𝑍0)|2]

+ 12𝑡 ∫
|𝑥|<𝑐

𝔼[|𝐹 (𝑍0, 𝑥)|2]𝜈(𝑑𝑥)

≤ 𝐶1(𝑡) ⋅ 𝑡(𝔼[|𝑏(𝑍0)|2] + 𝔼[|𝜎(𝑍0)|2]

+ ∫
|𝑥|<𝑐

𝔼[|𝐹 (𝑍0, 𝑥)|2]𝜈(𝑑𝑥)).

(4.10)

Por hipotésis, los coeficientes 𝑏, 𝜎 y 𝐹 cumplen con la condición (Ecuación 4.3), vale decir

|𝑏(𝑍0)|2 + |𝜎(𝑍0)|2 + ∫
|𝑥|<𝑐

|𝐹 (𝑍0, 𝑥)|𝜈(𝑑𝑥) ≤ 𝐾2(1 + |𝑍0|2).

De (Ecuación 4.8) podemos afirmar que 𝔼[𝐾2(1 + |𝑍0|2)] = 𝐾2(1 + 𝔼[|𝑍0|2]), tomando
valor esperado de la ecuación anterior, tenemos

𝔼[|𝑏(𝑍0)|2 + |𝜎(𝑍0)|2 + ∫
|𝑥|<𝑐

|𝐹 (𝑍0, 𝑥)|𝜈(𝑑𝑥)] ≤ 𝔼[𝐾2(1 + |𝑍0|2)].

𝔼[|𝑏(𝑍0)|2] + 𝔼[|𝑍0|2] + 𝔼[ ∫
|𝑥|<𝑐

|𝐹 (𝑍0, 𝑥)|2𝜈(𝑑𝑥)] ≤ 𝐾2(1 + 𝔼[|𝑍0|2]).

𝔼[|𝑏(𝑍0)|2] + 𝔼[|𝑍0|2] + ∫
|𝑥|<𝑐

𝔼[|𝐹 (𝑍0, 𝑥)|2]𝜈(𝑑𝑥) ≤ 𝐾2(1 + 𝔼[|𝑍0|2]).

(4.11)

Así de (Ecuación 4.10) y (Ecuación 4.11) tenemos que

𝔼[ sup
0≤𝑠≤𝑡

|𝑍1(𝑠) − 𝑍0|2] ≤ 𝐶1(𝑡)(𝔼[|𝑏(𝑍0)|2] + 𝔼[|𝜎(𝑍0)|2]

+ ∫
|𝑥|<𝑐

𝔼[|𝐹 (𝑍0, 𝑥)|2]𝜈(𝑑𝑥))

≤ 𝐶1(𝑡) ⋅ 𝑡 ⋅ 𝐾2(1 + 𝔼[|𝑍0|2]).

Peamos la diferencia para 𝑍𝑛+1 y 𝑍𝑛, por la iteración de Picard, tenemos que
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𝑍𝑛 = 𝑍0 + ∫
𝑡

0
𝑏(𝑍𝑛−1(𝑠−))𝑑𝑠 + ∫

𝑡

0
𝜎(𝑍𝑛−1(𝑠−))𝑑𝐵(𝑠)

+ ∫
𝑡

0
∫

|𝑥|<𝑐
𝐹(𝑍𝑛−1(𝑠−), 𝑥)𝑁(𝑑𝑠, 𝑑𝑥)

𝑍𝑛+1 = 𝑍0 + ∫
𝑡

0
𝑏(𝑍𝑛(𝑠−))𝑑𝑠 + ∫

𝑡

0
𝜎(𝑍𝑛(𝑠−))𝑑𝐵(𝑠)

+ ∫
𝑡

0
∫

|𝑥|<𝑐
𝐹(𝑍𝑛(𝑠−), 𝑥)𝑁(𝑑𝑠, 𝑑𝑥).

Consideremos la siguiente notación

Δ𝑏(𝑛, 𝑠) = 𝑏(𝑍𝑛(𝑠−)) − 𝑏(𝑍𝑛−1(𝑠−)).
Δ𝜎(𝑛, 𝑠) = 𝜎(𝑍𝑛(𝑠−)) − 𝜎(𝑍𝑛−1(𝑠−)).

Δ𝐹(𝑛, 𝑠, 𝑥) = 𝐹(𝑍𝑛(𝑠−), 𝑥) − 𝐹(𝑍𝑛−1(𝑠−), 𝑥).

Por lo tanto la diferencia 𝑍𝑛+1 − 𝑍𝑛 está dada por

𝑍𝑛+1(𝑡) − 𝑍𝑛(𝑡) = ∫
𝑡

0
Δ𝑏(𝑛, 𝑠)𝑑𝑠 + ∫

𝑡

0
Δ𝜎(𝑛, 𝑠)𝑑𝐵(𝑠)

+ ∫
𝑡

0
∫

|𝑥|<𝑐
Δ𝐹(𝑛, 𝑠, 𝑥)𝑁(𝑑𝑠, 𝑑𝑥).

Elevando al cuadrado, considerando valor absoluto y usando la desigualdad (Ecuación 4.5),
tenemos que

|𝑍𝑛+1(𝑡) − 𝑍𝑛(𝑡)|2 = ( ∫
𝑡

0
Δ𝑏(𝑛, 𝑠)𝑑𝑠 + ∫

𝑡

0
Δ𝜎(𝑛, 𝑠)𝑑𝐵(𝑠)

+ ∫
𝑡

0
∫

|𝑥|<𝑐
Δ𝐹(𝑛, 𝑠, 𝑥)𝑁(𝑑𝑠, 𝑑𝑥))

2

≤ 3(( ∫
𝑡

0
Δ𝑏(𝑛, 𝑠)𝑑𝑠)

2

+ ( ∫
𝑡

0
Δ𝜎(𝑛, 𝑠)𝑑𝑠)

2

+ ( ∫
𝑡

0
∫

|𝑥|<𝑐
Δ𝐹(𝑛, 𝑠, 𝑐)𝑁(𝑑𝑠, 𝑑𝑥))

2

).

(4.12)

Nuevamente, definimos la siguiente notación
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𝐴 ∶= 𝔼[ sup
0≤𝑠≤𝑡

( ∫
𝑠

0
Δ𝑏(𝑛, 𝑢)𝑑𝑢)

2

]

𝐵 ∶= 𝔼[ sup
0≤𝑠≤𝑡

( ∫
𝑠

0
Δ𝜎(𝑛, 𝑢)𝑑𝐵(𝑢))

2

]

𝐶 ∶= 𝔼[ sup
0≤𝑠≤𝑡

( ∫
𝑠

0
Δ𝐹(𝑛, 𝑢, 𝑥)𝑁(𝑑𝑢, 𝑑𝑥))

2

]

Por tanto de la (Ecuación 4.12), tomando supremo en el intervalo [0, 𝑡] y aplicando valor
esperado, la expresión se reduce a la forma

𝔼[ sup
0≤𝑠≤𝑡

|𝑍𝑛+1(𝑠) − 𝑍𝑛(𝑠)|2] ≤ 3(𝐴 + 𝐵 + 𝐶). (4.13)

Trabajaremos con cada termino de la desigualdad para poder acotar 𝔼[ sup
0≤𝑠≤𝑡

|𝑍𝑛+1(𝑡) −

𝑍𝑛(𝑡)|2]. Notemos que para 𝐴 el termino del supremo es una integral de Lebesgue, por

lo que usando la Desigualdad de Cauchy-Schwarz podemos afirmar que

( ∫
𝑠

0
Δ𝑏(𝑛, 𝑢)𝑑𝑢)

2

≤ 𝑠 ∫
𝑠

0
|Δ𝑏(𝑛, 𝑢)|2𝑑𝑢, ∀𝑠 ∈ [0, 𝑡].

Dado que 𝑠 ≤ 𝑡, esto implica que

𝑠 ∫
𝑠

0
|Δ𝑏(𝑛, 𝑢)|2𝑑𝑢 ≤ 𝑡 ∫

𝑡

0
|Δ𝑏(𝑛, 𝑢)|2𝑑𝑢.

Dado que el supremo preserva desigualdades, tenemos

sup
0≤𝑠≤𝑡

( ∫
𝑠

0
Δ𝑏(𝑛, 𝑢)𝑑𝑢)

2

≤ sup
0≤𝑠≤𝑡

(𝑠 ∫
𝑠

0
|Δ𝑏(𝑛, 𝑢)|2𝑑𝑢)

≤ sup
0≤𝑠≤𝑡

(𝑡 ∫
𝑡

0
|Δ𝑏(𝑛, 𝑢)|2𝑑𝑢)

= 𝑡 ∫
𝑡

0
|Δ𝑏(𝑛, 𝑢)|2𝑑𝑢.
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Tomando el valor esperado

𝐴 = 𝔼[ sup
0≤𝑠≤𝑡

( ∫
𝑠

0
Δ𝑏(𝑛, 𝑢)𝑑𝑢)

2

]

≤ 𝔼[𝑡 ∫
𝑡

0
|Δ𝑏(𝑛, 𝑢)|2𝑑𝑢]

= 𝑡 ∫
𝑡

0
𝔼[|Δ𝑏(𝑛, 𝑢)|2]𝑑𝑢.

Definimos al proceso 𝐻(𝑠) de la forma

𝐻(𝑠) ∶= ∫
𝑠

0
Δ𝜎(𝑛, 𝑢)𝑑𝐵(𝑢).

Afirmamos que dicho proceso es una martingala bajo los argumentos para el proceso
𝑀(𝑠) en (Ecuación 4.7). Haciendo uso de la desigualdad maximal de Doob

𝔼[ sup
0≤𝑠≤𝑡

|𝐻(𝑠)|2] ≤ 4𝔼[|𝐻(𝑡)|2].

Usando la isometría de Itô

𝔼[|𝐻(𝑠)|2] = 𝔼[ ∫
𝑡

0
|Δ𝜎(𝑛, 𝑢)|2𝑑𝑢].

Esto implica que

𝐵 = 𝔼[ sup
0≤𝑠≤𝑡

(|𝐻(𝑠)|2) ]

≤ 4𝔼[|𝐻(𝑡)|2]

= 4𝔼[ ∫
𝑡

0
|Δ𝜎(𝑛, 𝑢)|2𝑑𝑢]

= 4 ∫
𝑡

0
𝔼[|Δ𝜎(𝑛, 𝑢)|2]𝑑𝑢.

Definimos el proceso
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𝐿(𝑠) ∶= ∫
𝑠

0
∫

|𝑥|<𝑐
Δ𝐹(𝑛, 𝑢, 𝑥)𝑁(𝑑𝑢, 𝑑𝑥).

Afirmamos que dicho proceso es una martingala. Aplicando la desigualdad de Doob,
obtenemos

𝔼[ sup
0≤𝑠≤𝑡

|𝐿(𝑠)|2] ≤ 4𝔼 [|𝐿(𝑡)|2] .

Por la isometría de Itô en la medida de Poisson, tenemos

𝔼 [|𝐿(𝑡)|2] = 𝔼[ ∫
𝑡

0
( ∫

|𝑥|<𝑐
|Δ𝐹(𝑛, 𝑢, 𝑥)|2𝜈(𝑑𝑥))𝑑𝑢]

= ∫
𝑡

0
∫

|𝑥|<𝑐
𝔼 [|Δ𝐹(𝑛, 𝑢, 𝑥)|2] 𝜈(𝑑𝑥)𝑑𝑢.

Por lo tanto

𝐶 = 𝔼[ sup
0≤𝑠≤𝑡

∣∫
𝑠

0
∫

|𝑥|<𝑐
Δ𝐹(𝑛, 𝑢, 𝑥)𝑁(𝑑𝑢, 𝑑𝑥)∣

2

]

≤ 4 ∫
𝑡

0
∫

|𝑥|<𝑐
𝔼 [|Δ𝐹(𝑛, 𝑢, 𝑥)|2] 𝜈(𝑑𝑥)𝑑𝑢.

Así de (Ecuación 4.13)
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𝔼 [ sup
0≤𝑠≤𝑡

|𝑍𝑛+1(𝑠−) − 𝑍𝑛(𝑠−)|2] ≤ 3(𝐴 + 𝐵 + 𝐶)

≤ 3(𝑡 ∫
𝑡

0
𝔼 [|Δ𝑏(𝑛, 𝑢)|2] 𝑑𝑢

+ 4 ∫
𝑡

0
𝔼 [|Δ𝜎(𝑛, 𝑢)|2] 𝑑𝑢)

+ 4 ∫
𝑡

0
∫

|𝑥|<𝑐
𝔼 [|Δ𝐹(𝑛, 𝑢, 𝑥)|2] 𝜈(𝑑𝑥)𝑑𝑢

= 3𝑡 ∫
𝑡

0
𝔼 [|Δ𝑏(𝑛, 𝑢)|2] 𝑑𝑢

+ 12 ∫
𝑡

0
𝔼 [|Δ𝜎(𝑛, 𝑢)|2] 𝑑𝑢

+ 12 ∫
𝑡

0
∫

|𝑥|<𝑐
𝔼 [|Δ𝐹(𝑛, 𝑢, 𝑥)|2] 𝜈(𝑑𝑥)𝑑𝑢.

Recordemos que 𝐶1(𝑡) = máx{3𝑡, 12}, por lo tanto, 3𝑡 ≤ 𝐶1(𝑡) y 12 ≤ 𝐶1(𝑡), así

𝔼 [ sup
0≤𝑠≤𝑡

|𝑍𝑛+1(𝑠−) − 𝑍𝑛(𝑠−)|2] ≤ 3𝑡 ∫
𝑡

0
𝔼 [|Δ𝑏(𝑛, 𝑢)|2] 𝑑𝑢

+ 12 ∫
𝑡

0
𝔼 [|Δ𝜎(𝑛, 𝑢)|2] 𝑑𝑢

+ 12 ∫
𝑡

0
∫

|𝑥|<𝑐
𝔼 [|Δ𝐹(𝑛, 𝑢, 𝑥)|2] 𝜈(𝑑𝑥)𝑑𝑢

≤ 𝐶1(𝑡) ∫
𝑡

0
𝔼 [|Δ𝑏(𝑛, 𝑢)|2] 𝑑𝑢

+ 𝐶1(𝑡) ∫
𝑡

0
𝔼 [|Δ𝜎(𝑛, 𝑢)|2] 𝑑𝑢

+ 𝐶1(𝑡) ∫
𝑡

0
∫

|𝑥|<𝑐
𝔼 [|Δ𝐹(𝑛, 𝑢, 𝑥)|2] 𝜈(𝑑𝑥)𝑑𝑢

= 𝐶1(𝑡) ∫
𝑡

0
(𝔼 [|Δ𝑏(𝑛, 𝑢)|2] + 𝔼 [|Δ𝜎(𝑛, 𝑢)|2]

+ ∫
|𝑥|<𝑐

𝔼 [|Δ𝐹(𝑛, 𝑢, 𝑥)|2] 𝜈(𝑑𝑥))𝑑𝑢.

Recordemos que si 𝑓 ∶ [0, 𝑡] es una función, entonces para todo 𝑣 ∈ [0, 𝑡] se cumple que
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|𝑓(𝑣)| ≤ sup
0≤𝑢≤𝑡

|𝑓(𝑢)|.

Así, tenemos que

|𝑍𝑛(𝑢−) − 𝑍𝑛−1(𝑢−)|2 ≤ sup
0≤𝑣≤𝑢

|𝑍𝑛(𝑣) − 𝑍𝑛−1(𝑣)|2.

Tomando valor esperado, el cual, preserva la desigualdad, además, multiplicando por
𝐾1 > 0, obtenemos

𝐾1𝔼 [|𝑍𝑛(𝑢−) − 𝑍𝑛−1(𝑢−)|2] ≤ 𝐾1𝔼 [ sup
0≤𝑣≤𝑢

|𝑍𝑛(𝑣) − 𝑍𝑛−1(𝑣)|2] . (4.14)

Por la hipotesis (Ecuación 4.2) la cuál indica que los coeficientes 𝑏, 𝜎 y 𝐹 satisfacen

|𝑏(𝑦1) − 𝑏(𝑦2)|2 + |𝜎(𝑦1) − 𝜎(𝑦2)|2

+ ∫
|𝑥|<𝑐

|𝐹 (𝑦1, 𝑥) − 𝐹(𝑦2, 𝑥)|2 𝜈(𝑑𝑥)

≤ 𝐾1|𝑦1 − 𝑦2|2.

Aplicando esto para 𝑦1 = 𝑍𝑛(𝑢−) y 𝑦2 = 𝑍𝑛−1(𝑢−), además tomando valor esperado,
tenemos

𝔼 [|𝑏(𝑍𝑛(𝑢−)) − 𝑏(𝑍𝑛−1(𝑢−))|2] + 𝔼 [|𝜎(𝑍𝑛(𝑢−)) − 𝜎(𝑍𝑛−1(𝑢−))|2]

+ 𝔼 [∫
|𝑥<𝑐|

|𝐹 (𝑍𝑛(𝑢−), 𝑥) − 𝐹(𝑍𝑛−1(𝑢−), 𝑥)|2𝜈(𝑑𝑥)]

≤ 𝐾1𝔼 [|𝑍𝑛(𝑢−) − 𝑍𝑛−1(𝑢−)|2]

≤ 𝐾1𝔼 [ sup
0≤𝑣≤𝑢

|𝑍𝑛(𝑣) − 𝑍𝑛−1(𝑣)|2] .

Multiplicando por la variable 𝐶1(𝑡) e intregrando en el intervalo [0, 𝑡] con respecto a 𝑢
tenemos que
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𝔼 [ sup
0≤𝑠≤𝑡

|𝑍𝑛+1(𝑠) − 𝑍𝑛(𝑠)|2] = 𝐶1(𝑡) ∫
𝑡

0
(𝔼 [|𝑏(𝑍𝑛(𝑢−)) − 𝑏(𝑍𝑛−1(𝑢−))|2]

+ 𝔼 [|𝜎(𝑍𝑛(𝑢−)) − 𝜎(𝑍𝑛−1(𝑢−))|2]

+ 𝔼 [∫
|𝑥|<𝑐

|𝐹 (𝑍𝑛(𝑢−), 𝑥) − 𝐹(𝑍𝑛−1(𝑢−), 𝑥)|2𝜈(𝑑𝑥)] )𝑑𝑢

≤ 𝐶1(𝑡)𝐾1 ∫
𝑡

0
𝔼 [ sup

0≤𝑣≤𝑢
|𝑍𝑛(𝑢) − 𝑍𝑛−1(𝑢)|2] 𝑑𝑢.

Ahora bien, para 𝑛 ≥ 1 y 𝑡 ≥ 0 definimos el siguiente proceso

𝑑𝑛(𝑡) ∶= 𝔼 [ sup
0≤𝑠≤𝑡

|𝑍𝑛(𝑠) − 𝑍𝑛−1(𝑠)|2] .

Hemos demostrado hasta ahora las siguientes desigualdades

𝑑1(𝑡) = 𝔼 [ sup
0≤𝑠≤𝑡

|𝑍1(𝑠) − 𝑍0|2] ≤ 𝐶1(𝑡)𝐾2(1 + 𝔼[|𝑍0|2]). (4.15)

𝑑𝑛+1(𝑡) = 𝔼 [ sup
0≤𝑠≤𝑡

|𝑍𝑛+1(𝑠) − 𝑍𝑛(𝑠)|2] ≤ 𝐶1(𝑡)𝐾1 ∫
𝑡

0
𝑑𝑛(𝑠)𝑑𝑠. (4.16)

Definimos las variables 𝐶2(𝑡) ∶= 𝑡𝐶1(𝑡) y 𝐾3 ∶= máx{𝐾1, 𝐾2(1 + 𝔼[|𝑍0|2])}.

Afirmamos que para toda 𝑛 ∈ ℕ, se cumple

𝑑𝑛(𝑡) ≤ 𝐶2(𝑡)𝑛𝐾𝑛
3

𝑛!
. (4.17)

Procediendo por inducción, veamos que se cumple para 𝑛 = 1. Esto es claro, dado que
𝐾2(1 + 𝔼[|𝑍0|2]) ≤ máx{𝐾1, 𝐾2(1 + 𝔼[|𝑍0|2])} = 𝐾3, por lo tanto

𝑑1(𝑡) ≤ 𝐶1(𝑡)𝑡𝐾2(1 + 𝔼[|𝑍0|2]) ≤ 𝐶2(𝑡)𝐾3 = 𝐶2(𝑡)1𝐾1
3

1!
.

Suponemos ahora la afirmación es cierta para 𝑛 = 𝑘, es decir

𝑑𝑘(𝑡) ≤ 𝐶2(𝑡)𝑘𝐾𝑘
3

𝑘!
.

Veamos ahora que se cumple para 𝑛 = 𝑘 + 1, vale decir, queremos probar que
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𝑑𝑘+1(𝑡) ≤
𝐶2(𝑡)𝑘+1𝐾𝑘+1

3
(𝑘 + 1)!

.

Por la (Ecuación 4.16) tenemos

𝑑𝑘+1 ≤ 𝐶1(𝑡)𝐾1 ∫
𝑡

0
𝑑𝑘(𝑠)𝑑𝑠.

Usando la Hipotesis de inducción, podemos afirmar que

𝑑𝑘+1(𝑡) ≤ 𝐶1(𝑡)𝐾1 ∫
𝑡

0
𝑑𝑘(𝑠)𝑑𝑠 ≤ 𝐶1(𝑡)𝐾1 ∫

𝑡

0

𝐶2(𝑡)𝑘𝐾𝑘
3

𝑘!
.

Aquí debemos considerar los siguientes casos

Caso 1: 𝑡 < 1

Dado que 0 ≤ 𝑠 ≤ 𝑡 < 1, entonces 3𝑠 ≤ 3𝑡 < 3 < 12, por lo tanto

𝐶1(𝑠) = máx{3𝑠, 12} = 12 = máx{3𝑡, 12} = 𝐶1(𝑡).

Caso 2: 𝑡 ≥ 1

Es claro que si 𝑠 ≤ 𝑡, entonces 3𝑠 ≤ 3𝑡, por tanto, podemos afimar

𝐶1(𝑠) = máx{3𝑠, 12} ≤ máx{3𝑡, 12} = 𝐶1(𝑡).

En ambos casos note que se cumple 𝐶1(𝑠) ≤ 𝐶1(𝑡), más aún es claro que 𝐾1 ≤ 𝐾3, esto
implica que 𝐾1𝐾𝑘

3 ≤ 𝐾𝑘+1
3 por lo tanto
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𝑑𝑘+1(𝑡) ≤ 𝐶1(𝑡)𝐾1 ∫
𝑡

0
𝑑𝑘(𝑠)𝑑𝑠

≤ 𝐶1(𝑡)𝐾1 ∫
𝑡

0

𝐶2(𝑡)𝑘𝐾𝑘
3

𝑘!
𝑑𝑠.

= 𝐶1(𝑡)𝐾1𝐾𝑘
3

𝑘!
∫

𝑡

0
𝑠𝑘𝐶1(𝑠)𝑘𝑑𝑠

≤
𝐶1(𝑡)𝐾𝑘+1

3
𝑘!

∫
𝑡

0
𝑠𝑘𝐶1(𝑠)𝑘𝑑𝑠

≤
𝐶1(𝑡)𝐾𝑘+1

3
𝑘!

∫
𝑡

0
𝑠𝑘𝐶1(𝑡)𝑘𝑑𝑠

=
𝐶1(𝑡)𝐶1(𝑡)𝑘𝐾𝑘+1

3
𝑘!

∫
𝑡

0
𝑠𝑘𝑑𝑠

=
𝐶1(𝑡)𝑘+1𝐾𝑘+1

3
𝑘!

𝑡𝑘+1

𝑘 + 1

=
𝑡𝑘+1𝐶1(𝑡)𝑘+1𝐾𝑘+1

3
(𝑘 + 1)!

=
𝐶2(𝑡)𝑘+1𝐾𝑘+1

3
(𝑘 + 1)!

.

Por lo tanto para toda 𝑛 ∈ ℕ se cumple

𝑑𝑛(𝑡) ≤ 𝐶𝑘
2 𝐾𝑛

3
𝑛!

.

Veamos que la sucesión {𝑍𝑛(𝑡)}𝑛∈ℕ es una sucesión de Cauchy en 𝐿2 usando la norma
‖ ⋅ ‖2 ∶= [𝔼(| ⋅ |2)]1/2 el cuál hace de 𝐿2 un espacio completo.

Sean 𝑚, 𝑛ℕ, sin perdida de generalidad, supongamos que 𝑚 < 𝑛, aplicando la desigualdad
del triangulo, podemos afirmmar que para cada 0 ≤ 𝑠 ≤ 𝑡 se cumple

‖𝑍𝑛(𝑠) − 𝑍𝑚(𝑠)‖2 = ∥
𝑛

∑
𝑟=𝑚+1

(𝑍𝑟(𝑠) − 𝑍𝑟−1(𝑠))∥
2

≤
𝑛

∑
𝑟=𝑚+1

‖𝑍𝑟(𝑠) − 𝑍𝑟−1(𝑠)‖2.

De la (Ecuación 4.17) sabemos que para cada 𝑟 = 𝑚 + 1, 𝑚 + 2, … , 𝑛 se cumple

𝔼[ sup
0≤𝑠≤𝑡

|𝑍𝑟(𝑠) − 𝑍𝑟−1(𝑠)|2] ≤ 𝐶2(𝑡)𝑟𝐾𝑟
3

𝑟!
.
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Dado que son terminos no negativos, tomando raíz se puede afirmar que

‖𝑍𝑟(𝑠) − 𝑍𝑟−1(𝑠)‖2 ≤
√√√
⎷

𝔼[ sup
0≤𝑢≤𝑡

|𝑍𝑟(𝑠) − 𝑍𝑟−1(𝑠)|2]

≤
𝐶2(𝑡)𝑟/2𝐾𝑟/2

3
(𝑟!)𝑟/2 .

Por tanto para cada 0 ≤ 𝑠 ≤ 𝑡 tenemos

‖𝑍𝑛(𝑠) − 𝑍𝑚(𝑠)‖2 ≤
𝑛

∑
𝑟=𝑚+1

‖𝑍𝑟(𝑠) − 𝑍𝑟−1(𝑠)‖2

≤
𝑛

∑
𝑟=𝑚+1

𝐶2(𝑡)𝑟/2𝐾𝑟/2
3

(𝑟!)𝑟/2 .

Definimos la siguiente variable

𝐴′ ∶= 𝐶2(𝑡)𝐾3 > 0.

Reescribiendo el termino de la suma de la siguiente forma

𝑎𝑟 = 𝐴𝑟/2

(𝑟!)1/2 = (𝐴𝑟

𝑟!
)

1/2

. (4.18)

Veamos la convergencía de la serie

∞
∑
𝑟=1

𝑎𝑟 =
∞

∑
𝑟=1

(𝐴𝑟

𝑟!
)

1/2

.

Considerando el cociente del término 𝑎𝑟 tenemos
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𝑎𝑟+1
𝑎𝑟

=
( 𝐴𝑟+1

(𝑟+1)!)
1/2

(𝐴𝑟

𝑟! )
1/2

= ( 𝐴𝑟+1

(𝑟 + 1)!
⋅ 𝑟!

𝐴𝑟 )
1/2

= ( 𝐴
𝑟 + 1

)
1/2

.

Ahora tomando el límite cuando 𝑟 → ∞

lím
𝑟→∞

𝑎𝑟+1
𝑎𝑟

= lím
𝑟→∞

√ 𝐴
𝑟 + 1

= 0.

Dado que este límite es estrictamente menor que 1, por el criterio de la razón, podemos
afirmar que la serie converge absolutamente esto implica que la serie converge, más aún,
su cola converge, es decir, para todo 𝜀 > 0 existe 𝑁 ∈ ℕ tal que

∞
∑

𝑟=𝑁+1

𝐶2(𝑡)𝑟/2𝐾𝑟/2
3

(𝑟!)𝑟/2
< 𝜀.

Entonces, para todo 𝑛, 𝑚 ≥ 𝑁 tales que 𝑚 < 𝑛 y todo 𝑠 ∈ [0, 𝑡]

‖𝑍𝑛(𝑠) − 𝑍𝑚(𝑠)‖2 ≤
𝑛

∑
𝑟=𝑚+1

𝐶2(𝑡)𝑟/2𝐾𝑟/2
3

(𝑟!)𝑟/2 ≤
∞

∑
𝑟=𝑁+1

𝐶2(𝑡)𝑟/2𝐾𝑟/2
3

(𝑟!)𝑟/2 < 𝜀.

Por lo tanto, podemos afirmar que (𝑍𝑛(𝑠)) es una sucesión de Cauchy en 𝐿2.

Al ser 𝐿2(Ω, ℱ, ℙ) un espacio de Banach, vale decir, es un espacio completo con la norma
‖ ⋅ ‖2, entonces toda sucesión de Cauchy converge en 𝐿2. Luego existe 𝑍(𝑠) ∈ 𝐿2 tal que

lím
𝑚→∞

‖𝑍𝑚(𝑠) − 𝑍(𝑠)‖2 = 0, ∀𝑠 ∈ [0, 𝑡]. (4.19)

Cómo 𝑚 < 𝑛, por la desigualdad del triángulo, afirmamos que

‖𝑍(𝑠) − 𝑍𝑛(𝑠)‖2 ≤ ‖𝑍(𝑠) − 𝑍𝑚(𝑠)‖2 + ‖𝑍𝑚(𝑠) − 𝑍𝑛(𝑠)‖2.

Tomando límite cuando 𝑚 → ∞ en ambos lados; por la Ecuación 4.19 tenemos que
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lím
𝑚→∞

‖𝑍𝑚(𝑠) − 𝑍(𝑠)‖2 = 0.

Luego, dado que ya se demostró que la seríe dada por Ecuación 4.18 converge entonces

lím
𝑚→∞

‖𝑍𝑚(𝑠) − 𝑍𝑛(𝑠)‖2 ≤ lím
𝑚→∞

𝑚
∑

𝑟=𝑛+1

𝐶2(𝑡)𝑟/2𝐾𝑟/2
3

(𝑟!)𝑟/2 =
∞

∑
𝑟=𝑛+1

𝐶2(𝑡)𝑟/2𝐾𝑟/2
3

(𝑟!)𝑟/2 .

Además el termino ‖𝑍(𝑠) − 𝑍𝑛(𝑠)‖2 no depende de 𝑚, por lo tanto

‖𝑍(𝑠) − 𝑍𝑛(𝑠)‖2 ≤
∞

∑
𝑟=𝑛+1

𝐶2(𝑡)𝑟/2𝐾𝑟/2
3

(𝑟!)𝑟/2 .

Consideremos ahora la siguiente notación

𝑋𝑛 ∶= sup
0≤𝑠≤𝑡

|𝑍𝑛(𝑠) − 𝑍𝑛−1(𝑠)|.

Queremos encontrar una cota para

ℙ(𝑋𝑛 ≥ 1
2𝑛 ).

Aplicando a 𝑋2
𝑛 Chebyshev-Markov tenemos que

ℙ(𝑋𝑛 ≥ 1
2𝑛 ) = ℙ(𝑋2

𝑛 ≥ 1
4𝑛 ) ≤ 4𝑛𝔼[𝑋2

𝑛]. (4.20)

Notemos que 𝔼[𝑋2
𝑛] ya esta acotado dado por la Ecuación 4.17, así

𝔼[𝑋2
𝑛] = 𝔼[ sup

0≤𝑠≤𝑡
|𝑍𝑛(𝑠) − 𝑍𝑛−1(𝑠)|2] ≤ 𝐶2(𝑡)𝑛𝐾𝑛

3
𝑛!

.

De la Ecuación 4.20, esto implica que

ℙ(𝑋𝑛 ≥ 1
2𝑛 ) ≤ 4𝑛 𝐶2(𝑡)2𝐾𝑛

3
𝑛!

= (4𝐶2(𝑡)𝐾3)𝑛

𝑛!
.

Más aún, sabemos que la seríe 𝐶2(𝑡)𝑛𝐾𝑛
3

𝑛!
, esto implica que (4𝐶2(𝑡)𝐾3)𝑛

𝑛!
también coverge,

por lo tanto
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∞
∑
𝑛=1

ℙ( sup
0≤𝑠≤𝑡

|𝑍𝑛(𝑠) − 𝑍𝑛−1(𝑠)| ≥ 1
2𝑛 ) ≤

∞
∑
𝑛=1

(4𝐶2(𝑡)𝐾3)𝑛

𝑛!
< ∞.

De aquí es posible usar el Lema de Borell-Cantelli, es decir, podemos afirmar

ℙ( lím sup
𝑛→∞

{ sup
0≤𝑠≤𝑡

|𝑍𝑛(𝑠) − 𝑍𝑛−1(𝑠)| ≥ 1
2𝑛 }) = 0.

La estimación obtenida nos dice que la probabilidad de que las diferencias consecutivas
|𝑍𝑛(𝑠) − 𝑍𝑛−1(𝑠)| sean “grandes” (mayores que 1/2𝑛) se vuelve extremadamente pequeña
a medida que 𝑛 crece, tan pequeña que la suma de todas esas probabilidades es finita.

En otras palabras, casi todas las trayectorias de la sucesión (𝑍𝑛) se vuelven uniformemente
estables, a partir de algún momento, los términos de la sucesión ya no cambian mucho
entre sí, ni en ningún instante del intervalo [0, 𝑡].

Esto garantiza que, con probabilidad 1, la sucesión (𝑍𝑛(⋅)) converge uniformemente en
[0, 𝑡] a una función límite 𝑍(⋅). Es decir, no solo converge punto a punto, sino que lo hace
de manera controlada en todo el intervalo al mismo tiempo.

Veamos ahora que dicha solución es única, así supongamos que 𝑍(1) = (𝑍(1)(𝑡))𝑡≥0 y
𝑍(2) = (𝑍(2)(𝑡))𝑡≥0 son dos soluciones fuertes de la SDE modificada, es decir, procesos
adaptados, càdlàg, cuadrado-integrables y que satisfacen, para todo 𝑡 ≥ 0, las ecuaciones
integrales:

𝑍(𝑖)(𝑡) = 𝑍0 + ∫
𝑡

0
𝑏(𝑍(𝑖)(𝑠−)) 𝑑𝑠

+ ∫
𝑡

0
𝜎(𝑍(𝑖)(𝑠−)) 𝑑𝐵(𝑠)

+ ∫
𝑡

0
∫

|𝑥|<𝑐
𝐹(𝑍(𝑖)(𝑠−), 𝑥) ̃𝑁(𝑑𝑠, 𝑑𝑥),

para 𝑖 = 1, 2, casi seguramente. Queremos ver que 𝑍(1)(𝑡) = 𝑍(2)(𝑡) para todo 𝑡 ≥ 0 con
probabilidad 1. Restando las dos ecuaciones de 𝑍(1) y 𝑍(2) tenemos que

𝑍(1)(𝑡) − 𝑍(2)(𝑡) = ∫
𝑡

0
[𝑏(𝑍(1)(𝑠−)) − 𝑏(𝑍(2)(𝑠−))] 𝑑𝑠

+ ∫
𝑡

0
[𝜎(𝑍(1)(𝑠−)) − 𝜎(𝑍(2)(𝑠−))] 𝑑𝐵(𝑠)

+ ∫
𝑡

0
∫

|𝑥|<𝑐
[𝐹 (𝑍(1)(𝑠−), 𝑥) − 𝐹(𝑍(2)(𝑠−), 𝑥)] ̃𝑁(𝑑𝑠, 𝑑𝑥).

(4.21)
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Definimos la siguiente notación

Δ𝑏(𝑠) ∶= 𝑏(𝑍(1)(𝑠−)) − 𝑏(𝑍(2)(𝑠−))
Δ𝜎(𝑠) ∶= 𝜎(𝑍(1)(𝑠−)) − 𝜎(𝑍(2)(𝑠−))

Δ𝐹(𝑠, 𝑥) ∶= 𝐹(𝑍(1)(𝑠−), 𝑥) − 𝐹(𝑍(2)(𝑠−), 𝑥)

Nuestro objetivo ahora es estimar 𝔼 [ sup
0≤𝑠≤𝑡

|𝑍(1)(𝑡) − 𝑍(2)(𝑡)|2]. Para ello, similar al
procedimiento anterior, elevando al cuadrado la Ecuación 4.21, tomando supremo y
despues esperanza en el intervalo [0, 𝑡] tenemos la siguiente desigualdad

𝔼 [ sup
0≤𝑠≤𝑡

|𝑍(1)(𝑠) − 𝑍(2)(𝑠)|2] ≤3(𝔼 ⎡⎢
⎣

sup
0≤𝑠≤𝑡

∣ ∫
𝑠

0
[Δ𝑏(𝑠)]𝑑𝑢∣

2

⎤⎥
⎦

+ 𝔼 ⎡⎢
⎣

sup
0≤𝑠≤𝑡

∣ ∫
𝑠

0
[𝜎(𝑠)]𝑑𝐵(𝑢)∣

2

⎤⎥
⎦

+ 𝔼 ⎡⎢
⎣

sup
0≤𝑠≤𝑡

∣ ∫
𝑠

0
∫

|𝑥|<𝑐
[Δ𝐹(𝑢, 𝑥)]𝑁(𝑑𝑢, 𝑑𝑥)∣

2

⎤⎥
⎦

).

Aplicando la desigualdad de Cauchy–Schwarz para integrales, para el primer termino de
la desigualdad tenemos

∣ ∫
𝑠

0
Δ𝑏(𝑢)𝑑𝑢∣

2

≤ 𝑠 ∫
𝑠

0
|Δ𝑏(𝑢)|2𝑑𝑢

≤ 𝑡 ∫
𝑡

0
|Δ𝑏(𝑢)|2𝑑𝑢.

Dado que 𝑠 ≤ 𝑡 al tomar supremo y valor esperado obtenemos la cota

𝔼 ⎡⎢
⎣

sup
𝑜≤𝑠≤𝑡

∣ ∫
𝑠

0
Δ𝑏(𝑢)𝑑𝑢∣

2

⎤⎥
⎦

≤ 𝑡 ∫
𝑡

0
𝔼[|Δ𝑏(𝑢)|2]𝑑𝑢.

Bajo argumentos similares utilizados anteriormente, afirmamos que el proceso

∫
𝑠

0
Δ𝜎(𝑢) 𝑑𝐵(𝑢),
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es una martingala local continua, por tanto, usando la desigualdad maximal de Doob
tenemos

𝔼 [ sup
0≤𝑠≤𝑡

∣∫
𝑠

0
Δ𝜎(𝑢)𝑑𝐵(𝑢)∣

2

] ≤ 4𝔼 ⎡⎢
⎣

∣ ∫
𝑡

0
Δ𝜎(𝑠) 𝑑𝐵(𝑠)∣

2

⎤⎥
⎦

.

De aquí, usando la isometría de Itô

𝔼 ⎡⎢
⎣

∣ ∫
𝑡

0
Δ𝜎(𝑠)𝑑𝐵(𝑠)∣

2

⎤⎥
⎦

≤ 𝔼[ ∫
𝑡

0
|Δ𝜎(𝑠)|2𝑑𝑠].

Esto implica que

𝔼[ ∫
𝑡

0
|Δ𝜎(𝑠)|2𝑑𝑠] = ∫

𝑡

0
𝔼[|Δ𝜎(𝑠)|2𝑑𝑠].

Por lo tanto

𝔼 [ sup
0≤𝑠≤𝑡

∣∫
𝑠

0
Δ𝜎(𝑢) 𝑑𝐵(𝑢)∣

2

] ≤ 4 ∫
𝑡

0
𝔼[|Δ𝜎(𝑠)|2𝑑𝑠].

Podemos afirmar ahora que el siguiente proceso es una martingala local càdlàg

∫
𝑠

0
∫

|𝑥|<𝑐
Δ𝐹(𝑢, 𝑥)𝑁(𝑑𝑢, 𝑑𝑥).

Nuevamente aplicando la desigualdad maximal de Doob la isometría de Itô para integrales
respecto a 𝑁 tenemos que

𝔼 ⎡⎢
⎣

sup
0≤𝑠≤𝑡

∣∫
𝑠

0
∫

|𝑥|<𝑐
Δ𝐹(𝑢, 𝑥)𝑁(𝑑𝑢, 𝑑𝑥)∣

2

⎤⎥
⎦

≤ 4 ∫
𝑡

0
∫

|𝑥|<𝑐
𝔼[|Δ𝐹(𝑠, 𝑥)|2]𝜈(𝑑𝑥)𝑑𝑠.

Por lo tanto
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𝔼 [ sup
0≤𝑠≤𝑡

∣𝑍(1)(𝑠) − 𝑍(2)(𝑠)∣2] ≤3𝑡 ∫
𝑡

0
𝔼[|Δ𝑏(𝑠)|2]𝑑𝑠

+ 12 ∫
𝑡

0
𝔼[|Δ𝜎(𝑠, 𝑥)|2𝑑𝑠]

+ 12 ∫
𝑡

0
∫

|𝑥|<𝑐
𝔼[|Δ𝐹(𝑠, 𝑥)|2]𝜈(𝑑𝑥)𝑑𝑠.

Usando y factorizando la variable ya definida 𝐶1(𝑡) tenemos que

𝔼 [ sup
0≤𝑠≤𝑡

∣𝑍(1)(𝑠) − 𝑍(2)(𝑠)∣2] ≤𝐶1(𝑡) ∫
𝑡

0
(𝔼[|Δ𝑏(𝑠)|2] + 𝔼[|Δ𝜎(𝑠)|2]

+ ∫
|𝑥|<𝑐

𝔼[|Δ𝐹(𝑠, 𝑥)|2]𝜈(𝑑𝑥))𝑑𝑠.

De manera similar como ya se hizo en el análisis de la diferencia entre 𝑍𝑛 y 𝑍𝑛−1 en la
iteración de Picard, haciendo uso de la condición (Ecuación 4.2) podemos obtener

𝔼 [ sup
0≤𝑠≤𝑡

∣𝑍(1)(𝑠) − 𝑍(2)(𝑠)∣2] ≤ 𝐶1(𝑡)𝐾1 ∫
𝑡

0
𝔼 [ sup

0≤𝑢≤𝑠
|𝑍(1)(𝑢) − 𝑍(2)(𝑢)|2] 𝑑𝑠.

De esta forma definimos ahora la función

𝐷(𝑡) ∶= 𝔼 [ sup
0≤𝑠≤𝑡

∣𝑍(1)(𝑠) − 𝑍(2)(𝑠)∣2] .

Es claro que 𝐷(𝑡) ≥ 0 para toda 𝑡 ≥ 0. Fijando a 𝑇 ≥ 0, podemos afirmar que para todo
𝑡 ∈ [0, 𝑇 ] la variable 𝐶1(𝑡) ≤ 𝐶1(𝑇 ) < ∞. Por el Teorema de Gronwall tenemos que

𝐷(𝑡) ≤ 0 ⋅ 𝑒𝐶1(𝑇 )𝐾1 = 0, 𝑡 ∈ [0, 𝑇 ].

Por la arbitrariedad de 𝑇, tenemos que para todo 𝑡 ≥ 0 se cumple

𝐷(𝑡) = 𝔼 [ sup
0≤𝑠≤𝑡

∣𝑍(1)(𝑠) − 𝑍(2)(𝑠)∣2] = 0.

Por lo tanto, por propiedad de la esperanza podemos afirmar que

sup
0≤𝑠≤𝑡

∣𝑍(1)(𝑠) − 𝑍(2)(𝑠)∣2 = 0 c.s.
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Es decir, 𝑍(1)(𝑠) = 𝑍(2)(𝑠) para toda 𝑠 ∈ [0, 𝑡], 𝑐.𝑠. Definimos

𝐴𝑛 ∶= {𝜔 ∶ 𝑍(1)(𝑠, 𝜔) = 𝑍(2)(𝑠, 𝜔) para todo𝑠 ∈ [0, 𝑛]} .

Sabemos que ℙ(𝐴𝑛) = 1 para toda 𝑛 ∈ ℕ y también

𝐴 =
∞
⋂
𝑛=1

𝐴𝑛 = {𝜔 ∶ 𝑍(1)(𝑡, 𝜔) = 𝑍(2)(𝑡, 𝜔) para todo 𝑡 ≥ 0} .

Por la continuidad de la probabilidad (propiedad de medidas):

ℙ(𝐴) = ℙ (
∞
⋂
𝑛=1

𝐴𝑛) = 1.

Veamos el caso cuando 𝔼[|𝑍0|2] = ∞. En teoria de probabilidad, al truncar una variable
aleatoria podemos cortarla cuando esta está fuera de un rango finito, reemplazando sus
valores extremos por cero o por el valor de dicho borde. Vamos aproximar 𝑍0 por una
sucesión de variables acotadas, para más adelante garantizar la existencia y unicidad de
una solución a la Ecuación 4.1. Definimos el truncamiento de la variable aleatoria 𝑍0 de
la forma

𝑍(𝑛)
0 ∶= 𝑍0 ⋅ 1{|𝑍0|≤𝑛},

Donde

1{|𝑍0|≤𝑛}(𝜔) = {
1, si |𝑍0(𝜔)| ≤ 𝑛,
0, si |𝑍0(𝜔)| > 𝑛.

Esto implica que

𝑍(𝑛)
0 (𝜔) = {

𝑍0(𝜔), si |𝑍0(𝜔)| ≤ 𝑛,
0, si |𝑍0(𝜔)| > 𝑛.

Esto garantiza que 𝔼[|𝑍(𝑛)
0 |2] ≤ 𝑛2 < ∞, por otro lado, cómo 𝑍0 es 𝓕- medible y 1{|𝑍0|≤𝑛}

también lo es, entonces 𝑍(𝑛)
0 es ℱ-medible.

Fijemos 𝜔 ∈ Ω tal que |𝑍0(𝜔)| < ∞, por tanto, existe 𝑁 ∈ ℕ tal que |𝑍0(𝜔)| ≤ 𝑁, de
aquí, para todo 𝑛 ≥ 𝑁, se tiene |𝑍0(𝜔)| ≤ 𝑛, más aún, 𝑍(𝑛)

0 (𝜔) = 𝑍0(𝜔). Esto implica
que, para casi todo 𝜔 ∈ Ω, la sucesión (𝑍(𝑛)

0 (𝜔)) es constante e igual a 𝑍0(𝜔). Así, por
definición de convergencia puntual, tenemos
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lím
𝑛→∞

𝑍(𝑛)
0 (𝜔) = 𝑍0(𝜔), para casi todo 𝜔.

Por lo tanto

𝑍(𝑛)
0

c.s.
−−−→
𝑛→∞

𝑍0,

entonces para cada 𝑛 ∈ ℕ la variable 𝑍(𝑛)
0 es ℱ0-medible y acotada. Lo que nos permite

afirmar que pertenece a 𝐿2(Ω, ℱ0, ℙ). En consecuencia, es posible aplicar los argumentos
anteriores, cuando 𝔼[|𝑍0|2] < ∞, para afirmar que existe una única solución fuerte de la
Ecuación 4.1, digamos 𝑍(𝑛), con condición inicial 𝑍(𝑛)

0 .

Para cada 𝑁 ∈ ℕ, definimos el conjunto

Ω𝑁 ∶= {𝜔 ∈ Ω ∶ |𝑍0(𝜔)| ≤ 𝑁}.

Esto implica, para cualquier 𝑚 > 𝑛 ≥ 𝑁, se tiene

𝑍(𝑚)
0 (𝜔) = 𝑍0(𝜔) = 𝑍(𝑛)

0 para todo 𝜔 ∈ Ω𝑁. (4.22)

Es deicr, en Ω𝑁, las condiciones iniciales de 𝑍(𝑚) y 𝑍(𝑛) son iguales. Por lo tanto, para
todo 𝑡 ≥ 0 se cumple que

𝑍(𝑚)(𝑡) = 𝑍(𝑛)(𝑡) c.s.

Queremos ver ahora que la sucesión {𝑍𝑛}𝑛∈ℕ es uniformemente de Cauchy en probabilidad,
es decir, dado 𝜀 > 0 y 𝛿 > 0, existe 𝑁 ∈ ℕ tal que para todo 𝑚, 𝑛 ≥ 𝑁, se cumple

ℙ( sup
𝑡≥0

|𝑍(𝑛)(𝑡) − 𝑍(𝑚)(𝑡)| > 𝛿) < 𝜀.

Notemos que de los conjuntos anteriormente definidos, cumplen que Ω𝑁 ⊂ Ω𝑁+1. Por
otro lado, al ser 𝑍0 una variable aleatoria real, entonces ℙ(|𝑍0| < ∞) = 1 . Así al ser Ω𝑁
una sucesión de conjuntos crecientes, se tiene

∞
⋃
𝑛=1

Ω𝑛 = {|𝑍0| < ∞}.

Por la continuidad de la probabilidad, podemos afirmar lím
𝑛→∞

ℙ(Ω𝑛) = 1. Esto implica
que para cualquier 𝜀 > 0, existe 𝑁 ∈ ℕ tal que
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ℙ(Ω𝑁) > 1 − 𝜀. (4.23)

De Ecuación 4.22 sabemos que

sup
𝑡≥0

|𝑍(𝑛)(𝑡) − 𝑍(𝑚)(𝑡)| = 0 en Ω𝑁

Por lo tanto, si la diferencia es distinta de cero, es decir, para 𝛿 > 0, solo puede ocurrir
fuera de Ω𝑁, esto es, ocurre en el complemento de Ω𝑁. Entonces

{𝜔 ∶ sup
𝑡≥0

|𝑍(𝑛)(𝑡) − 𝑍(𝑚)(𝑡)| > 𝛿} ⊂ Ω𝑐
𝑁.

Por propiedad básica de la probabilidad, podemos afirmar

ℙ( sup
𝑡≥0

|𝑍(𝑛)(𝑡) − 𝑍(𝑚)(𝑡)| > 𝛿) ≤ ℙ(Ω𝑐
𝑁).

Más aún, notemos que ℙ(Ω𝑐
𝑁) = 1 − ℙ(Ω𝑁), por la Ecuación 4.23, entonces ℙ(Ω𝑐

𝑁) < 𝜀.
De la ecuación anterior, podemos afirmar

ℙ( sup
𝑡≥0

|𝑍(𝑛)(𝑡) − 𝑍(𝑚)(𝑡)| > 𝛿) < 𝜀, ∀ 𝑚, 𝑛 ≥ 𝑁

Por lo tanto, la sucesión (𝑍(𝑛))𝑛∈ℕ es uniformemente de Cauchy en probabilidad. Al estar
en 𝐿2 podemos afirmar que existe un proceso 𝑍 = {𝑍(𝑡)}𝑡≥0 de tal forma que

sup
𝑡≥0

|𝑍(𝑛)(𝑡) − 𝑍(𝑡)|
ℙ

−−−→
𝑛→∞

0.

Por el teorema de convergencia de sucesiones de Cauchy en probabilidad, para la sucesión
es posible extraer una subsucesión {𝑍𝑛𝑘

} tal que se cumple

sup
𝑡≥0

|𝑍(𝑛𝑘)(𝑡) − 𝑍(𝑡)|
c.s.

−−−→
𝑘→∞

0.

De aquí, notemos que por construcción, cada 𝑍(𝑛𝑘) posee trayectorias càdlàg, y la
convergencia es uniforme casi segura, entonces el límite 𝑍 admite una versión càdlàg. Por
otro lado, dado que cada 𝑍(𝑛𝑘) es adaptado y su convergencia al proceso 𝑍 es uniforme,
basta notar que la adaptabilidad de un proceso se converva bajo convergencia puntual,
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en nuestro caso, convergencia uniforme casi seguramente, por tanto podemos afirmar que
el límite 𝑍 es adaptado.

Analicemos ahora la unicidad de dicha solución. Procediendo por contradicción, suponga-
mos que existe otra solución fuerte 𝑍′ = (𝑍′(𝑡))𝑡≥0 con la misma condición inicial 𝑍0.
Fijando a 𝑁 ∈ ℕ, consideremos al conjunto Ω𝑁, ya sabemos que en este conjunto la
condición incial es acotada y además por el caso 𝔼[|𝑍0|2] < ∞ la solución es única. Por
lo tanto

𝑍′(𝑡)(𝜔) = 𝑍𝑀(𝑡)(𝜔) para todo 𝑡 ≥ 0, ∀𝜔 ∈ Ω𝑁 c.s.

para cualquier 𝑀 ≥ 𝑁, donde 𝑍𝑀 es la solución con condición inicial truncada 𝑍(𝑀) = 𝑍0
en Ω𝑁. Asumamos que esto falla para algún 𝑀 ≥ 𝑁, es decir, existe un conjunto 𝐴 ⊂ Ω𝑁
con ℙ(𝐴) > 0 tal que 𝑍′(𝑡)(𝜔) ≠ 𝑍𝑀(𝑡)(𝜔) con 𝜔 ∈ 𝐴. Podemos definir un nuevo proceso,
llamemos a este 𝑍″

𝑀, mediante

𝑍″
𝑀(𝑡)(𝜔) = {

𝑍′(𝑡)(𝜔), 𝜔 ∈ 𝐴,
𝑍𝑀(𝑡)(𝜔) 𝜔 ∉ 𝐴.

Dado que 𝐴 ⊂ Ω𝑁, entonces 𝐴 ∈ ℱ0, podemos afirmar que 𝑍″ es adaptado, pues 𝑍′

y 𝑍(𝑀) son dos procesos adaptados en un conjunto ℱ0-medible. Luego, al ser 𝑍″ la
combinación de dos funciones càdlàg entonces 𝑍″ es càdlàg.

Notemos que si 𝜔 ∈ 𝐴 ⊂ Ω𝑁 ⊂ Ω𝑀, entonces

𝑍″
𝑀(0)(𝜔) = 𝑍′(0)(𝜔) = 𝑍0(𝜔) = 𝑍(𝑀)

0 (𝜔),

por otro lado, si 𝜔 ∉ 𝐴, esto implica que

𝑍″
𝑀(0)(𝜔) = 𝑍(𝑀)(0)(𝜔) = 𝑍0(𝜔),

en ambos casos se tiene que 𝑍″
𝑀(0) = 𝑍(𝑀)(0) con 𝜔 ∈ 𝐴 casi seguramente.

Entonces 𝑍″
𝑀 y 𝑍(𝑀) son dos soluciones de la Ecuación 4.1 con la misma condición inicial,

por construcción, en el conjunto 𝐴, se tiene que 𝑍″
𝑀(𝑡) ≠ 𝑍(𝑀)(𝑡) para algún 𝑡. Lo cual

es una contradicción al caso cuando 𝔼[|𝑍0|2] < ∞ donde se establece la unicidad casi
segura de la solución fuerte.

Dado que al suponer ℙ(𝐴) > 0 nos lleva a una contradicción, podemos afirmar que
ℙ(𝐴) = 0, es decir, 𝑍′(𝑡) = 𝑍(𝑀)(𝑡) para todo 𝑡 ≥ 0, casi seguramente en Ω𝑁. Esto vale
para todo 𝑁 ∈ ℕ, como
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ℙ(
∞
⋃

𝑁=1
Ω𝑁) = 1,

podemos concluir

ℙ(𝑍′(𝑡) = 𝑍(𝑡) para todo 𝑡 ≥ 0) = 1.

Por lo tanto, la solución fuerte es única casi seguramente
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5 Estabilidad media cuadrática

Consideremos la ecuación diferencial estocástica con saltos

𝑑𝑋(𝑡) = 𝑎𝑋(𝑡−)𝑑𝑡 + 𝑏𝑋(𝑡−)𝑑𝑊(𝑡) + 𝑐𝑋(𝑡−)𝑑𝑁(𝑡), 𝑡 ≥ 0, (5.1)

con condición inicial 𝑋(0) = 𝑋0, donde 𝑎, 𝑏, 𝑐 ∈ ℝ son constantes, 𝑊(𝑡) es un movimiento
browniano estándar y 𝑁(𝑡) es un proceso de Poisson con intensidad 𝜆 > 0, definido sobre
un espacio de probabilidad filtrado (Ω, ℱ, {ℱ𝑡}𝑡≥0, ℙ).

Nuestro objetivo es presentar el proceso de deducción de la solución explícita de la
Ecuación 5.1. La herramienta que usaremos para el análisis de la ecuación diferencial
estocástica con saltos será el lema de Itô para procesos de difusión con saltos. Con esto,
consideremos un proceso estocástico {𝑌𝑛}𝑛≥0 de la forma

𝑑𝑌 (𝑡) = 𝜇(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑑𝑊(𝑡) + 𝛾(𝑡)𝑑𝑁(𝑡),

donde 𝜇(𝑡), 𝜎(𝑡), 𝛾(𝑡) son procesos adaptados, 𝑊(𝑡) es un movimiento browniano y 𝑁(𝑡)
es un proceso de Poisson. Para una función 𝑓 ∈ 𝐶2{ℝ+ × ℝ+} el diferencial estocástico
de 𝑓(𝑡, 𝑌 (𝑡)) está dado por

𝑑𝑓(𝑡, 𝑌 (𝑡)) = 𝜕𝑓
𝜕𝑡

(𝑡, 𝑌 (𝑡−))𝑑𝑡

+ 𝜕𝑓
𝜕𝑦

(𝑡, 𝑌 (𝑡−))[𝜇(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑑𝑊(𝑡)]

+ 1
2

𝜕2𝑓
𝜕𝑦2 (𝑡, 𝑌 (𝑡−))𝜎(𝑡)2𝑑𝑡

+ [𝑓(𝑡, 𝑌 (𝑡−) + 𝛾(𝑡)) − 𝑓(𝑡, 𝑌 (𝑡−))]𝑑𝑁(𝑡).

Notemos que el último término representa el cambio finito en 𝑓 cuando ocurre unn salto
de tamaño 𝛾(𝑡) en 𝑌.

Para nuestro caso, para facilitar el tratamiento de los saltos, vamos a introducir el proceso
de Poisson compensado definido por

𝑁(𝑡) ∶= 𝑁(𝑡) − 𝜆𝑡, 𝑡 ≥ 0.
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Sabemos que este preceso es una martingala con esperanza 𝔼[𝑁(𝑡)] = 0, varianza
𝔼[|𝑁(𝑡)|2] = 𝜆𝑡, además los incrementos en dicho proceso son independientes.

Teorema 5.1. Consideremos la ecuación diferencial estocástica lineal con saltos

𝑑𝑋(𝑡) = 𝑎𝑋(𝑡−)𝑑𝑡 + 𝑏𝑋(𝑡−)𝑑𝑊(𝑡) + 𝑐𝑋(𝑡−)𝑑𝑁(𝑡), 𝑡 ≥ 0, (5.2)

donde 𝑎, 𝑏, 𝑐 ∈ ℝ son constantes, 𝑊(𝑡) es un movimiento browiniano y 𝑁(𝑡) es un proceso
de Poisson con intensidad 𝜆 > 0. Definimos el siguiente parámetro de estabilidad

𝑙 ∶= 2𝑎 + 𝑏2 + 𝜆𝑐(2 + 𝑐),

y se sabe que la solución análitica es estable en media cuadrática, es decir

lím
𝑡→∞

𝔼[|𝑋(𝑡)|2] = 0,

si y solo si 𝑙 < 0.

Sea Δ𝑡 > 0 un tamaño de paso fijo y 𝜃 ∈ [0, 1] el paramétro del método theta compensado
estocástico (CSTM). Al aplicar dicho método a Ecuación 5.2, si 1

2
≤ 𝜃 ≤ 1, entonces

el método es estable en media cuadrática, es decir, para todo Δ𝑡 > 0 se cumple que las
aproximaciones numéricas heredan la estabilidad de la solución análitica siempre que
𝑙 < 0.

Si 0 ≤ 𝜃 < 1
2

, el método es estable en media cuadrática si y solo si el tamaño del paso
satisface

Δ𝑡 < −𝑙
(1 − 2𝜃)(𝑎 + 𝜆𝑐)2 .

Demostración. Cómo primer paso, comenzaremos aplicando el método theta compensado
estocástico a la Ecuación 5.2, con condición inicial 𝑋(0) = 𝑋0. Para aplicar dicho método
(CSTM) definimos el proceso de Poisson compensado de la forma 𝑁(𝑡) ∶= 𝑁(𝑡) − 𝜆𝑡, el
cuál es una martingala y satiisface 𝔼[𝑁(𝑡)] = 0 y 𝔼[|𝑁(𝑡)|2] = 𝜆𝑡. Por lo tanto, esto nos
permite reescribir la Ecuación 5.2 de la forma equivalente

𝑑𝑋(𝑡) = 𝑎𝑋(𝑡−)𝑑𝑡 + 𝑏𝑋(𝑡−)𝑑𝑊(𝑡) + 𝑐𝑋(𝑡−)𝑑𝑁(𝑡)

= 𝑎𝑋(𝑡−)𝑑𝑡 + 𝑏𝑋(𝑡−)𝑑𝑊(𝑡) + 𝑐𝑋(𝑡−)𝑑(𝑁(𝑡) + 𝜆𝑡)

= 𝑎𝑋(𝑡−)𝑑𝑡 + 𝑏𝑋(𝑡−)𝑑𝑊(𝑡) + 𝑐𝑋(𝑡−)𝑑𝑁(𝑡) + 𝜆𝑐𝑋(𝑡−)𝑑𝑡

= (𝑎 + 𝜆𝑐)𝑋(𝑡)𝑑𝑡 + 𝑏𝑋(𝑡−)𝑑𝑊(𝑡) + 𝑐𝑋(𝑡−)𝑑𝑁(𝑡).

(5.3)
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Para un tamaño de paso constante Δ𝑡 > 0, definimos la malla 𝑡𝑛 = 𝑛Δ𝑡 con 𝑛 ∈ ℕ.
El método (CSTM) aplicado a la Ecuación 5.3 genera un sucesión de aproximaciones
𝑌𝑛 ≈ 𝑋(𝑡𝑛) mediante la ecuación de diferencias implícita dada por

𝑌𝑛+1 =𝑌𝑛 + (1 − 𝜃)Δ𝑡(𝑎 + 𝜆𝑐)𝑌𝑛

+ 𝜃Δ𝑡(𝑎 + 𝜆𝑐)𝑌𝑛+1 + 𝑏𝑌𝑛Δ𝑊𝑛 + 𝑐𝑌𝑛Δ𝑁𝑛,
(5.4)

donde 𝜃 ∈ [0, 1] es un parámetro del método, los incrementos estocásticos se definen de
la forma

Δ𝑊𝑛 ∶ = 𝑊(𝑡𝑛+1) − 𝑊(𝑡𝑛)

Δ𝑁𝑛 ∶ = 𝑁(𝑡𝑛+1) − 𝑁(𝑡𝑛).

Notemos que, dichos incrementos son independientes entre sí, además satifacen que
𝔼[Δ𝑊𝑛] = 𝔼[Δ𝑁𝑛] = 0, 𝔼[|Δ𝑊𝑛|2] = Δ𝑡 y 𝔼[|Δ𝑁𝑛|2] = 𝜆Δ𝑡.

Reorganizando la Ecuación 5.4 de tal forma que podamos expresar de forma explícita el
término 𝑌𝑛+1 en términos de 𝑌𝑛, obtenemos

𝑌𝑛+1 − 𝜃Δ𝑡(𝑎 + 𝜆𝑐)𝑌𝑛+1 = 𝑌𝑛 + (1 − 𝜃)Δ𝑡(𝑎 + 𝜆𝑐)𝑌𝑛

+ 𝑏𝑌𝑛Δ𝑊𝑛 + 𝑐𝑌𝑛Δ𝑁𝑛.

De aquí, factorizando el término 𝑌𝑛+1 del lado izquierdo y el término 𝑌𝑛 del lado derecho

(1 − 𝜃Δ𝑡(𝑎 + 𝜆𝑐))𝑌𝑛+1 = 𝑌𝑛 + (1 − 𝜃)Δ𝑡(𝑎 + 𝜆𝑐)𝑌𝑛

+ 𝑏𝑌𝑛Δ𝑊𝑛 + 𝑐𝑌𝑛Δ𝑁𝑛

= [1 + (1 − 𝜃)Δ𝑡(𝑎 + 𝜆𝑐) + 𝑏Δ𝑊𝑛 + 𝑐Δ𝑁𝑛]𝑌𝑛.

(5.5)

Dado que por hipótesis sabemos que 𝑙 = 2𝑎 + 𝑏2 + 𝜆𝑐(2 + 𝑐) < 0, podemos notar

2𝑎 + 𝑏2 + 𝜆𝑐(2 + 𝑐) = 2𝑎 + 2𝜆𝑐 + 𝑏2 + 𝜆𝑐2

= 2(𝑎 + 𝜆𝑐) + 𝑏2 + 𝜆𝑐2 < 0,

es claro que 𝑏2 + 𝜆𝑐2 > 0, esto implica que (𝑎 + 𝜆𝑐) < 0. Con esto, podemos afirmar que
para Δ𝑡 lo suficientemente pequeño, el término 1 − 𝜃Δ𝑡(𝑎 + 𝜆𝑐) no se anula y es positivo.

Por otro lado, veamos la esperanza del segundo momento de Ecuación 5.5. Elevando al
cuadrado y obteniendo el valor esperado, tenemos
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(1 − 𝜃Δ𝑡(𝑎 + 𝜆𝑐))2𝔼[|𝑌𝑛+1|2] = 𝔼[∣1 + (1 − 𝜃)Δ𝑡(𝑎 + 𝜆𝑐)

+ 𝑏Δ𝑊𝑛 + 𝑐Δ𝑁𝑛∣
2

]𝔼[|𝑌𝑛|2].

(5.6)

Vamos a desarrollar la esperanza del término estocástico. Para faciliatr el proceso,
definimos la siguiente notación

𝐴 ∶= 1 + (1 − 𝜃)Δ𝑡(𝑎 + 𝜆𝑐)
𝐵 ∶= 𝑏Δ𝑊𝑛

𝐶 ∶= 𝑐Δ𝑁𝑛.

Notemos que 𝐴 es una constante determinista, mientras que 𝐵 y 𝐶 son variables aleatorias.
Por tanto, aplicando la linealidad de la esperanza, el término estocástico de la Ecuación 5.6
queda de la forma

𝔼[|𝐴 + 𝐵 + 𝐶|2] = 𝔼[𝐴2 + 𝐵2 + 𝐶2

+ 2𝐴𝐵 + 2𝐴𝐶 + 2𝐵𝐶]
= 𝔼[𝐴2] + 𝔼[𝐵2] + 𝔼[𝐶2]

+ 𝔼[2𝐴𝐵] + 𝔼[2𝐴𝐶] + 𝔼[2𝐵𝐶].

(5.7)

Utilizando las propiedades de los incrementos independientes, podemos afirmar que 𝔼[𝐵] =
𝑏𝔼[Δ𝑊𝑛] = 0 y 𝔼[𝐶] = 𝑐𝔼[Δ𝑁𝑛] = 0. Además, 𝔼[2𝐴𝐵] = 2𝐴𝑏𝔼[Δ𝑊𝑛] = 0 y 𝔼[2𝐴𝐶] =
2𝐴𝑐𝔼[Δ𝑁𝑛] = 0. Luego, por la independiencia entre el movimiento browniano y el proceso
de Poisson compensado, se cumple 𝔼[𝐵𝐶] = 𝑏𝑐𝔼[Δ𝑊𝑛Δ𝑁𝑛] = 𝑏𝑐𝔼[Δ𝑊𝑛]𝔼[Δ𝑁𝑛] = 0.

Por otro lado, 𝔼[𝐵2] = 𝑏2𝔼[(𝑊𝑛)2] = 𝑏2Δ𝑡 y 𝔼[𝐶2] = 𝑐2𝔼[(𝑁𝑛)2] = 𝑐2𝜆Δ𝑡. Por lo tanto,
de la Ecuación 5.7 tenemos

𝔼[|𝐴 + 𝐵 + 𝐶|2] = 𝐴2 + 𝑏2Δ𝑡 + 𝜆𝑐2Δ𝑡
= (1 + (1 − 𝜃)Δ𝑡(𝑎 + 𝜆𝑐))2

+ 𝑏2Δ𝑡 + 𝜆𝑐2Δ𝑡.

Sustituyendo esto en Ecuación 5.6 tenemos

(1 − 𝜃Δ𝑡(𝑎 + 𝜆𝑐))2𝔼[|𝑌𝑛+1|2] = [(1 + (1 − 𝜃)Δ𝑡(𝑎 + 𝜆𝑐))2

+ 𝑏2Δ𝑡 + 𝜆𝑐2Δ𝑡]𝔼[|𝑌𝑛|2].
(5.8)
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Notemos que la Ecuación 5.8 describe el cambio del segundo momento de la solución
numérica. Ahora bien, para que el método sea estable en media cuadrática, es necesario
que la sucesión 𝔼[|𝑌𝑛|2] sea decreciente y tienda a cero cuando 𝑛 tiende a infinito. Esto
ocurre si y solo si

(1 + (1 − 𝜃)Δ𝑡(𝑎 + 𝜆𝑐))2 + 𝑏2Δ𝑡 + 𝜆𝑐2Δ𝑡
(1 − 𝜃Δ𝑡(𝑎 + 𝜆𝑐))2 < 1 (5.9)

Recordemos que anteriormente ya se mencionó que el término 1 − 𝜃Δ𝑡(𝑎 + 𝜆𝑐) es no nulo
y positivo, por lo que es posible multiplicar la Ecuación 5.9 por el denominador y seguir
conservando la desigualdad, es decir

(1 + (1 − 𝜃)Δ𝑡(𝑎 + 𝜆𝑐))2 + 𝑏2Δ𝑡 + 𝜆𝑐2Δ𝑡 < (1 − 𝜃Δ𝑡(𝑎 + 𝜆𝑐))2 (5.10)

Para facilitar la notación, definimos la variable 𝐾 ∶= 𝑎 + 𝜆𝑐. Además, expandiendo la
expresión del lado derecho de la desigualdad de la forma

(1 − 𝜃Δ𝑡(𝑎 + 𝜆𝑐))2 = (1 − 𝜃Δ𝑡𝐾)2

= 1 − 2𝜃Δ𝑡𝑘 + 𝜃2Δ𝑡2𝐾2.

De igual forma, al extender el término al cuadrado del lado izquierdo de la Ecuación 5.10

(1 + (1 − 𝜃)Δ𝑡(𝑎 + 𝜆𝑐))2 = (1 + (1 − 𝜃)Δ𝑡𝐾)2

= 1 + 2(1 − 𝜃)Δ𝑡𝐾 + (1 − 𝜃)2Δ𝑡2𝐾2.

De esta manera, ordenando los terminos, la Ecuación 5.10 se expresa como se sigue

1 + 2(1 − 𝜃)Δ𝑡𝐾 + 𝑏2Δ𝑡
+ 𝜆𝑐2Δ𝑡 + (1 − 𝜃)2Δ𝑡2𝐾2 < 1 − 2𝜃Δ𝑡𝐾 + 𝜃2Δ𝑡2𝐾2.

(5.11)

Restando el termino 1 en ambos lados de la desigualdad, además reordenando adecuada-
mente y agrupando los términos con factores Δ𝑡 y Δ𝑡2, tenemos

− 2𝜃𝐾Δ𝑡 − 2(1 − 𝜃)𝐾Δ𝑡 − 𝑏2Δ𝑡
− 𝜆𝑐2Δ𝑡 + 𝜃2𝐾2Δ𝑡2 − (1 − 𝜃)2𝐾2Δ𝑡2 > 0

(−2𝜃𝐾 − 2(1 − 𝜃)𝐾 − 𝑏2 − 𝜆𝑐2)Δ𝑡
+ (𝜃2 − (1 − 𝜃)2)𝐾2Δ𝑡2 > 0

(−2𝜃𝐾 − 2𝐾 + 2𝜃𝐾 − 𝑏2 − 𝜆𝑐2)Δ𝑡
+ (𝜃2 − (1 − 2𝜃 + 𝜃2))𝐾2Δ𝑡2 > 0

(−2𝐾 − 𝑏2 − 𝜆𝑐2)Δ𝑡 + (2𝜃 − 1)𝐾2Δ𝑡2 > 0
(2𝜃 − 1)Δ𝑡2𝐾2 − (2𝐾 + 𝑏2 + 𝜆𝑐2)Δ𝑡 > 0.

(5.12)
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Del parámetro de establilidad 𝑙, notemos

𝑙 = 2𝑎 + 𝑏2 + 𝜆𝑐(2 + 𝑐)
= 2𝑎 + 𝑏2 + 2𝜆𝑐 + 𝜆𝑐2

= 2𝑎 + 2𝜆𝑐 + 𝑏2 + 𝜆𝑐2

= 2(𝑎 + 𝜆𝑐) + 𝑏2 + 𝜆𝑐2

= 2𝐾 + 𝑏2 + 𝜆𝑐2.

Por lo tanto, sustituyendo 𝑙 en Ecuación 5.11 se tiene

(2𝜃 − 1)Δ𝑡2𝐾2 − 𝑙Δ𝑡 > 0

Dado que Δ𝑡 > 0, es posible factorizar un término de la forma

Δ𝑡[(2𝜃 − 1)Δ𝑡𝐾2 − 𝑙] > 0,

más aún

(2𝜃 − 1)Δ𝑡𝐾2 − 𝑙 > 0.

Despejando de tal forma que podamos expresar la desigualdad anterior en términos de
−𝑙 tenemos

−𝑙 > −(2𝜃 − 1)(𝑎 + 𝜆𝑐)2Δ𝑡 = (1 − 2𝜃)(𝑎 + 𝜆𝑐)2Δ𝑡 (5.13)

Cuando 𝜃 = 1
2

, esto implica 1 − 2𝜃 = 0, así

0 = (1 − 2𝜃)(𝑎 + 𝜆𝑐)2Δ𝑡 < −𝑙

Por hipotesis 𝑙 < 0, de aqui 0 < −𝑙. Por lo tanto, el método es estable cuando 𝜃 = 1
2

.

Luego, cuando 1
2

< 𝜃 ≤ 1, esto implica que 1−2𝜃 < 0. Para este caso (1−2𝜃)(𝑎+𝜆𝑐)2Δ𝑡 <
0, de igual forma −𝑙 > 0, entonces

(1 − 2𝜃)(𝑎 + 𝜆𝑐)2Δ𝑡 < 0 < −𝑙,

en consecuencia, el método sigue siendo estable bajo las condiciones de la solución
análitica.

43



Por último, para el caso 0 ≤ 𝜃 < 1
2

, esto implica, (1 − 2𝜃)(𝑎 + 𝜆𝑐)2 > 0, por lo que la
Ecuación 5.13 se cumple si y solo si

Δ𝑡 < −𝑙
(1 − 2𝜃)(𝑎 + 𝜆𝑐)2 .
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