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Resumen

Esta tesis presenta



1 Introduccion

1.1. Introduccion del modelo de Langevin y su aplicacién a
terremotos

El modelo de Langevin fue propuesto por Paul Langevin en 1908 para describir el
movimiento browniano de particulas suspendidas en un fluido. Este modelo captura la
dindmica de una particula bajo la influencia de una fuerza determinista (como la friccion)
y una fuerza aleatoria (ruido blanco gaussiano), y se expresa mediante una ecuacién
diferencial estocastica de la forma:

dv(t) = —vyu(t) dt + V2D dW (t) (1.1)
donde de Ecuacién 1.1:

» o(t): velocidad de la particula,

= : coeficiente de friccion,

» D: coeficiente de difusion (intensidad del ruido térmico),
» W(t): movimiento browniano estédndar.

Con el tiempo, este modelo fue generalizado para describir sistemas que combinan
comportamientos deterministas con fluctuaciones aleatorias, incluyendo fenémenos fisicos,
biolégicos, quimicos y financieros.

En el contexto geofisico, el modelo de Langevin se ha extendido para modelar la dindmica
de fallas sismicas. Para representar eventos sismicos abruptos —como rupturas en la
corteza terrestre— se incorpora un término adicional de saltos, modelados mediante un
proceso de Poisson o, més generalmente, un proceso de Lévy. El modelo extendido es:

do(t) = [—yv(t) + F(t)] dt + V2D dW (t) + dJ (1),
donde:
» (F,(t)): fuerza externa acumulada, por ejemplo, por tecténica de placas,

» (J(t)): proceso de saltos, que representa eventos siibitos (rupturas sismicas),
= Kl resto de simbolos mantienen su significado anterior.



Una formulacién tipica para los saltos es:

donde:

s (N(t)) es un proceso de Poisson de tasa (A > 0),
» (Y;) representa la magnitud del i-ésimo salto (aleatoria, por ejemplo, con distribucién
exponencial o normal truncada).

Este modelo se denomina Ecuaciéon de Langevin con saltos y pertenece a la clase de
ecuaciones diferenciales estocasticas impulsadas por procesos de Lévy.

Su aplicacion en geofisica permite modelar:

= Kl movimiento gradual de una falla mediante la fricciéon y ruido térmico,
= La ocurrencia de microtemblores,
= La irrupcion de terremotos mayores como saltos discontinuos.

Este enfoque ofrece una base matematica para la simulacién y el analisis estadistico de
secuencias sismicas, incluyendo la estimacién de probabilidades de ocurrencia, clasificacién
de eventos y simulacién de trayectorias dindmicas realistas.



2 Preliminares

2.1. Analisis Real y Funcional (Base Analitica).

Definiciéon 2.1. Espacio métrico
Llamamos espacio métrico al par (X, d), donde X es un conjunto no vacioy d : X x X —
[0,00) es una funcién (llamada métrica) que satisface, para todo z,y, z € X:

= d(z,y) =0 < z=y,
» d(z,y) =d(y,z),
» d(z,2) < d(z,y) +d(y, 2).

Definiciéon 2.2. Sucesién de Cauchy.
Una sucesién (x,,),cy €n un espacio métrico (X, d) es una sucesién de Cauchy si para
todo € > 0, existe N € N tal que

m,n >N = d(z,,,z,) <Ec.

Definicion 2.3. Espacio métrico completo
Un espacio métrico (X, d) se dice completo si toda sucesién de Cauchy en X converge a
un limite en X.

El espacio R con la métrica d(x,y) = |z — y| es completo.

Definicion 2.4. o-algebra de Borel.
La o-édlgebra de Borel en R, denotada B(R), es la o-dlgebra generada por los intervalos
abiertos de R.

Definiciéon 2.5. Funcion Borel Medible
Una funcién f : R — R es Borel-medible si para todo B € B(R), se tiene que f~*(B) €
B(R).

Teorema 2.1. Toda funcion continua f: R — R es Borel-medible.

Demostracion. Si f es continua, la preimagen de cualquier conjunto abierto es abierta.
Como los abiertos generan B(R) y la preimagen conmuta con uniones, intersecciones
numerables y complementos, se sigue que f~(B) € B(R) para todo B € B(R). O



2.2. Espacios L? y convergencia.

Definicién 2.6. Sea (2,7, P) un espacio de probabilidad. EL espacio L*(Q2, 7, P) se
define como

L?={X:Q—=R| X es F-medible y E[|X|*] < 0o} .
Definicién 2.7. Para X € L?, su norma se define como
1/2
1 X1 2 = (E[X]?]) .
Definicién 2.8. Una sucesién (X,,),,cy C L? converge en L? a X € L? si
Jim X, = X2 =

es decir, lim E[|X, — X|?] =0.
n—odo

2.3. Espacios de Banach

Definicién 2.9. Un espacio de Banach es un espacio vectorial normado (X, | - |) que
es completo con respecto a la métrica inducida por la norma, es decir, toda sucesién de
Cauchy en X converge en X.

El espacio L?(2, 5, P) es un espacio de Banach (de hecho, un espacio de Hilbert).

Definicién 2.10. Una sucesion (z,,),,cy e€n un espacio normado (X, | - |) es de Cauchy
si para todo € > 0, existe N € N tal que

m,n>N = |z, —z,| <e.

En R, esto se reduce a: (z,,) es de Cauchy si |z,, — z,,| < & para m,n suficientemente
grandes.



2.4. Desigualdades

Proposicién 2.1. Para cualesquiera aq, ..., a, € R,
2
n n
E a,; <n a?
K2 — (A
i=1 =1

En particular, para n = 3,

(a+b+c)? <3(a®+b*+c?).

Proposicién 2.2. Sean f,g:[0,T] — R funciones medibles tales que f,g € L*([0,T]).

FEntonces
/O " fs)ats) ds| < ( / e ds) " ( / e ds)

Corolario 2.1. Si g =1, entonces para todo t € [0,T],

(/ 7(s) ds)2 < t/ot £(s)[? ds.

1/2




3 Objetivos

3.1. Los objetivos de este proyecto se estaran afinando dentro
de las proximas semanas.



4 Existencia y unicidad fuerte

Teorema 4.1. Sea (2, F,(F,);>0,P) un espacio de probabilidad filtrado que satisface
las hipdtesis usuales. Consideremos la ecuacion diferencial estocdstica modificada (sin
saltos grandes):

dZ(t) = b(Z(t—)) dt

+0o(Z(t—))dB(t) (4.1)

+ F(Z(t—),z) N(dt,dz), t>0,

lz|<c

con condicion inicial Z(0) = Z,, donde B(t) es un movimiento browniano estindar
unidimensional (r = 1); N(dt,dx) es una medida aleatoria de Poisson definida en
R, x (R\{0}) con medida de intensidad v(dx); N(dt,dz) = N(dt,dz) — v(dz)dt denota
la correspondiente medida compensada; ¢ € (0,00] es un umbral fijo que separa los saltos
pequenos de los grandes; y Z, es una variable aleatoria T j-medible, independiente del
rutdo estocdstico.

Supongamos que los coeficientesb: R - R, 0 : R—- R y F: Rx R — R son funciones
medibles que satisfacen las siguientes condiciones:

4.0.0.1. (C1) Condicién de Lipschitz:

Ezxiste una constante K; > 0 tal que, para todo y;,y, € R,

(Y1) — b(yQ)P + [o(y1) — 0(92)‘2

4 / Flyy,2) — Flys,2)2 v(de) (42)
|z|<e
< K1’y1 —3/2’2-
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4.0.0.2. (C2) Condicién de crecimiento lineal:

Existe una constante Ko > 0 tal que, para todo y € R,
b(y)|* + |o(y)|? +/ |F(y, 2)? v(de) < Ky(1+[yl). (4.3)
lz|<e

Bajo las hipdtesis anteriores, existe una tinica solucion fuerte Z = (Z(t))~q de la ecuacion
(Ecuacion 4.1) tal que:

» 7 es un proceso adaptado y cddldg (continuo por la derecha con limites por la
izquierda),
» La solucion es unica casi sequramente, esto es, si (Z') es otra solucion, entonces

P(Z(t) = Z'(t) para todo t > 0) = 1. (4.4)

Demostracion. Queremos ver la existencia de una solucién Z = (Z(t))- para la ecuacién
(Ecuacién 4.1) con condicién inicial Z(0) = Z,. Bajo las hipétesis (Ecuacion 4.2) y
(Ecuacién 4.3) para los coeficientes b, o y F. Analizaremos primero el caso cuando
E[|Zy]?] < oo. Dado que la ecuacién estocastica de nuestro caso posee un movimiento
browniano B, es decir, ruido estocastico y una medida de Poisson compensada, dada por
]v, para esto utilizaremos la iteracion de Picard construyendo una sucesion de procesos
estocésticos a partir de la condicién inicial. Definiendo la sucecién de la siguiente forma:

Zy(t) i= Zy, ¥t > 0.
Paran >1
Znua>>~ar%/ﬁwzn@—»ds+}/cwzw—»d3@>
0 0
F(Z (s— ,:L‘]’\Vfds,dac .
+l/ (Z,(s—), 2) N (ds, da)

lz|<e

Demostraremos que el proceso Z, es un proceso adaptado y con trayectorias Cadlag.
Consideremos la diferencia Z;(t) — Z,(t). Por la iteracién de Picard tenemos:

a@=%@+/«%@»%+/d%ww
F(Z s—,xﬁds,dm.
+AL@<O<>>< )

Dado que Z,(t) = Z, para todo t > 0, entonces,

11



Zl(t)—ZO—/ ds+ | o(Z,)dB(s

s [
+/Ot/ F(Zy,z)N(ds, dz).

lz|<c

Considerando la desigualdad

(a+b+c)? <3(a?+ b + c2). (4.5)
Tomando valor absoulto y elevando al cuadrado la exprecién anterior tenemos que

t

20~ 2f =| [ 0z s + / o(Z) dB(s)
0

/ / [ Fz N(ds, do)
(o ([
(/ [ F (ds,d:c)) )

Para controlar de manera uniforme en todo el intervalo [0, t] tomamos el supremo sobre
todo el intervalo, ademas usando propiedades del supremos podemos obtener

S 1Z,(s) — Zy|? < P (3( (/ b(Zy) ds )2 + (/080<Z0)d3<8>>2

([ reeavan) )
3 (osiilit (/ b(Z,) ds>2 + s (/O o(Zp) dB(s))

2
+ sup (// F(Zy, ) (ds,dx)) )
0<s<t z|<c

Tomando valor esperado de ambos lado y usando la linealidad, tenemos que

2

2

2

12



[[oi‘;&'zl<5>—%2] =k [ (P ([ v )
w o ([ otzane)
+os<1?<)t< lmF Zy, @ )ﬁ(ds,dx)> )]
(Li‘i%( " )]

ve| g, ([ otzamo)|

fan (L e

Trabajaremos término por termino; asi notemos que la siguiente integral es de Lebesgue

(4.6)

/OS b(z)du = b(z) /0 du =b(z,) -

Por lo tanto

0<s<t 0<s<t 0<s<t

sup (/S b(Zo)dU> = sup (b(Zy) - 5)? = sup b(Zy)? - 52 = b(Z,)? - 2.
0

Consideremos ahora el proceso

M(s) = / (2, )dB(u). (4.7)
0

Afirmamos que dicho proceso es una martingala, pues al ser Z,, constante esto implica
que 0(Z;,) no dependa de u. Dado que Z, es F j-medible, entonces o(Z,) también lo es,
mas aun, es J ,-medible para toda u > 0. Por lo tanto el termino a integrar del proceso
M(s), el cudl es una integral de It6, es adaptado. Por hipotésis, de la condicién (C2),
podemos afirmar que

Ello(Zy)?] < Ky(1 + E[|Zp]?]) < o0

13



Esto pues obteniendo el valor esperado de (Ecuacién 4.3) , tomando a y = Z, tenemos

|F'(Z, ) IQV(d@]

< E[K5(1+(Z)?)] (4.8)
= KLE[1 +[Z|?]
:K2(1+[EHZO| ])

Ello(Z)P) < E | [6(Z0)? + |o(Zo) I +/

|z]<e

Por lo tanto, el proceso M(s) es una martingala. Asi, usando la desigualdad maximal de
Doob, tenemos que:

[E[ sup IM(8)|2] < AE[IM(2)[?].

0<s<t

De la isometria de Itd y por el teorema de Fubini

[E[ sup |M(s)|2] < AE[|M(t)[?]

0<s<t
t
:4{[/ |J(Z0)|2ds]
0

—4 / E[lo(Z,)[2)ds

E[lo(Zy)|? / ds
0

= 4tl[|o(Zy) %]

De manera andloga, para el termino

//m (Zy,2) N(du, dz).

Podemos afirmar que es una martingala. Usando la isometria de 1t6, desigualdad maximal
de Doob y por el teorema de Fubini

14



[E[ sup |W(s)|2] < AE[|W (t)?]

0<s<t
—4/ / E[|F(Zy, x)|*|v(dz)ds
lz|<c

= 4t/ E[|F(Zy, z)|*|v(dz).

lz|<c

Asi, de la igualdad (Ecuacién 4.6) tenemos

< 3<[E [oiliﬁt (/Osb(ZO)ds)2]
—i—[E[(Ei% (/ o(Zo) dB(s ))2]
(gL o))

3 (t2[E[|b(Zo)!2] +4tE[|o(Z,)[?]

vt
\

| [E[\F<zo,x>|21u<dx>)
= 32E[|b(Z,)[?] + 126 (| Zg) 2]
12t / E[|F(Zy, o) 2)v(da).

lz|<e

E [ sup |Z;(s) — ZOP

0<s<t

(4.9)

Notemos para los terminos en comiin 3t y 12¢ podemos definir la variable C|(t) :=
méx {3t, 12}, de aqui

3t2 =3t -t <méx {3t,12} -t = Cy(t) -
12t =12 -t <méx {3t,12} - t = C,(t) - t

Por lo tanto, (Ecuacién 4.9) queda de la forma

15



E [ sup |2, (s) — Zo|* | < 3t2E[|b(Zo)[*] + 12tE[|o(Z)) ]

0<s<t

+ 12t / El|F(Z,, 2)2]v(dz)

|x|<c

<Gi) -t (E[\b(Zo)lz] + Ello(Zo)1%)

g

z|<c

(4.10)

E[[F(Z, fU)IZ]V(d:U)) :
Por hipotésis, los coeficientes b, o y F cumplen con la condicién (Ecuacién 4.3), vale decir

6(Zo)I? + |o(Zo) I +/ |F(Zy, x)|v(dx) < Ka(1+[Zp]*).

lz|<c

De (Ecuacién 4.8) podemos afirmar que E[Ky(1 + |Z,|?)] = Kyo(1 + E[|Z,|?]), tomando
valor esperado de la ecuacién anterior, tenemos

2 [b(Z0)|2 +1o(Z,)? +/ IF(ZoﬁC)IV(dﬂf)] < E[K5(1+[Zp[%))-

|z|<c

E[16(Z0)[?] + E[| Zo[*] + E [/ |F'(Z, $)|2V(d$)] < Ko (1 + E[|1Zo]?)). (4.11)

lz|<c

E[1b(Z0)[*] + E[| Zo[*] + / E[|F(Zo, 2)*]v(dz) < Ky(1+ E[|Z,]).

lz|<c

Asi de (Ecuaciéon 4.10) y (Ecuacién 4.11) tenemos que

E [ sup |Z(s) — Zo|2

0<s<t

< Gi(t) (E[Ib(Zo)IQ] +Eflo(Zy) ]

g

| [EHF(ZOVI)F]V(d:E))
< C(t) -t Ky (1+ B[] Zo7)).

Peamos la diferencia para Z,, ,, y Z,,, por la iteraciéon de Picard, tenemos que

16



0 z|<e

Consideremos la siguiente notacién

Ab(n,s) = b(Z,(s=)) = b(Z,_1(5—)).
Aa(n,s) = 0(Z,(5=)) = 0(Z,-1(s7))-
AF(n,s,z)=F(Z,(s—),x) — F(Z,,_1(s—),x).

Por lo tanto la diferencia Z,  ; — Z,, estd dada por
t t
Zp1(t)—2Z,(t) = / Ab(n, s)ds +/ Ao(n, s)dB(s)
0 0

t
—1—/ AF(n,s,z)N(ds,dx).
|z|<c

Elevando al cuadrado, considerando valor absoluto y usando la desigualdad (Ecuacién 4.5),
tenemos que

Zyr () — Z, (D) = ( [ Abtnsyds + [ ot 5)anis)
0 0
2

t
+/ AF(n,s,z)N(ds, dx))
lz|<e

([ ()
+ ( /0 |w<cAF(n,s,c)ﬁ(ds,dx)> )

Nuevamente, definimos la siguiente notacion

(4.12)

17



- 2
A:=[FE| sup / Ab(n, u)du) ]
_OSSSt 0

Bi=F| sup /SAJ(n,u)dB(u)>]
0

0<s<t

2
C:=E| sup / AF(n,u,x)ﬁ(du,dx)) ]
0

0<s<t

Por tanto de la (Ecuacién 4.12), tomando supremo en el intervalo [0,¢] y aplicando valor
esperado, la expresién se reduce a la forma

0<s<t

[E[ sup |Z,,1(s) —Zn(s)|2] <3(A+B+0C). (4.13)

Trabajaremos con cada termino de la desigualdad para poder acotar E| sup |Z,, ., (t) —
0<s<t

Z,(t)]? | . Notemos que para A el termino del supremo es una integral de Lebesgue, por

lo que usando la Desigualdad de Cauchy-Schwarz podemos afirmar que

(/3 Ab(n,u)du) < s/s |Ab(n,u)|?du, Vs € [0,t].
0

0

Dado que s < t, esto implica que

s t
s/ |Ab(n, u)|?du gt/ |Ab(n, u)|?du.
0 0

Dado que el supremo preserva desigualdades, tenemos

2
sup (/ Ab(n,u)du) < sup (s/ ]Ab(n,u)Pdu)
0<s<t o 0<s<t 0
t
< sup (t/ ]Ab(n,u)|2du>
0<s<t 0

t
—t/ |Ab(n, u)|?du.
0

18



Tomando el valor esperado

A=L

2
sup (/ Ab(n, u)du) ]
OSSSt 0

t/o \Ab(n,u)Pdu]

t/ot E[| Ab(n, u)|2]du.

A

E

Definimos al proceso H(s) de la forma

H(s) := /3 Ao (n,u)dB(u).
0

Afirmamos que dicho proceso es una martingala bajo los argumentos para el proceso
M (s) en (Ecuacién 4.7). Haciendo uso de la desigualdad maximal de Doob

0<s<t

[E[ sup \H(S)!2] < 4E[|H ()]

Usando la isometria de Ito

E[|H(s)]*] = E

/Ot |Aa<n,u)\2du] .

Esto implica que

B=L

sup (IH(8>\2)]

0<s<t

< AE[|H (1))

/Ot Aa(n,u)|2du]

:4/ E[|Ac(n,u)|?]|du.

=4L

Definimos el proceso

19



L(s) := / AF(n,u,z)N(du, dz).
0 Yzl<c

Afirmamos que dicho proceso es una martingala. Aplicando la desigualdad de Doob,
obtenemos

[E[ sup IL(S)\2] <AE[IL@®)] .

0<s<t

Por la isometria de Itd en la medida de Poisson, tenemos

E[|L®)] = [E[/ (/ \AF(n,u,a})\zy(dm)) du]

E[|AF(n,u,2)[?] v(dz)du.
lz|<c

|

Por lo tanto

/ AF(n,u, x)ﬁ(du, dx)
lz|<e

C'—[E[ sup
0<s<t

<4 / /m IAF (n, u, 2)[2] v(da)du.

Asi de (Ecuacion 4.13)

20



E | sup |2, ., (s—) — Zn(s—)|2] <3(A+B+0)

02ont
§3(t/0 E [|Ab(n, w)|?] du
+4/t (1Ac(n, w)?] du)
+4/ /m AF(n, u, )] v(de)du
_ t/o [|tAb(n,u)] ] du
+12/0 E [|Ac(n, u)|?] du
+12/ /M AF(n, u,2)|2] v(da)du.

Recordemos que C (t) = max{3t, 12}, por lo tanto, 3t < C;(t) y 12 < C(¢), asi

E | sup |Z,0(5-) = Z, (=) | < 3¢ / E (1A, w)l?] du
+12/ E[|Ac(n,u)?] du
+12/ /1,<C [|AF(n,u,z)|?] v(dz)du
<ot >/ [1Ab(n, u)[2] du
+C(t /[E\Aanu 2] du

—i—Cl(t)/ /| E[|AF(n,u,z)|?] v(dz)du

E[|Ab(n, u)?*] + E[|Ac(n,u)]?]

A

+/

z|<c

E[|AF(n,u,z)| ]y(dm)) du.

Recordemos que si f : [0, ] es una funcién, entonces para todo v € [0, ¢] se cumple que
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[f(0)| < sup |f(u)].

0<u<t
Asi, tenemos que
‘Zﬁ<u_q'_'zﬁfl(u_JP < sup ’Zﬁ(v)_'zﬁflﬁolg
0<v<u

Tomando valor esperado, el cual, preserva la desigualdad, ademas, multiplicando por
K, > 0, obtenemos

K E[1Z,(0m) = Z 3 (0o)P) S KGE | sup |Z,(0) = Z, ] (419

Por la hipotesis (Ecuacién 4.2) la cudl indica que los coeficientes b, o y F satisfacen

0(y1) = b(ya) > + |0 (y1) — o(yo)|?
+ |F(yy, @) — F(yp, ) v(d)
[ o=

< K1|?/1 —y2|2.

Aplicando esto para y; = Z,(u—) y y, = Z,_1(u—), ademds tomando valor esperado,
tenemos

(u=)) = 0(Z,, 1 (u=))P?]
|F(Z,(u=),2) = F(Z, 1 (u—), fc)\zl/(dﬂ?)]
B2

n(u_ﬁ'_>Zﬁ—1(u_0’ﬂ
< KiE| swp |Z,(0) = Z,,(0)P].

0<v<u

r<c

E [B(Z, () ~ b(Z, s (w )] + E[Jo(2,
i [
\

<K

Multiplicando por la variable C(¢) e intregrando en el intervalo [0,t] con respecto a u
tenemos que
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E [ sup 12,000~ Z, (001 = €.00) [ (E[|b<zn<u—>>—b<zn_1<u—>>12]

0<s<t

+E([lo(Z,(u")) —0(Z, 4 (u=))?]

z|<c

< (1K, /0 E [ sup |Z.,(u) —zM(u)P] du.

0<v<u

Ahora bien, para n > 1y t > 0 definimos el siguiente proceso
4,(0) = E | s Z,(5) = Z, 1 (5.
0<s<t
Hemos demostrado hasta ahora las siguientes desigualdades

4(t) =E [ sup 1,(5) = Zy]| < CL(OK(1 +E[Zof?).

0<s<t

i (1) = E [ sup [Z,.1(s) — Zn(S)IQ} <G K, /Ot d,,(s)ds.

0<s<t
Definimos las variables Cy(t) := tC; (t) y K3 := max{K,, K5(1 + E[|Z,|?])}-
Afirmamos que para toda n € N, se cumple

Co(t)" K3
n! '

d,(t) <

L E [/ \F(Z, (u=),x) — F(Z, (u—

),m)]zl/(dx)] )du

(4.15)

(4.16)

(4.17)

Procediendo por induccién, veamos que se cumple para n = 1. Esto es claro, dado que

Ko(1+ E[|Zo[2)) < méc{ Ky, Ky (1 +E[|Zy[2))} = Ky, por lo tanto

Cy () Ky

d1<t) < C1(t)tK2(1 + [EHZOPD < 02<t)K3 = 1!

Suponemos ahora la afirmacién es cierta para n = k, es decir

Cy(t)FKE
dy.(t) < 2<13'3

Veamos ahora que se cumple para n = k + 1, vale decir, queremos probar que
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Colt) K

dy1(t) < Gt 1)!

Por la (Ecuacién 4.16) tenemos

t
dn < CUOK, [ d(s)ds.
0
Usando la Hipotesis de induccién, podemos afirmar que

t t k ok
hn) < COK, [ aysas <y, [ U
0 0 :

Aqui debemos considerar los siguientes casos
Caso 1: t < 1
Dado que 0 < s <t < 1, entonces 3s < 3t < 3 < 12, por lo tanto
Cy(s) = max{3s,12} = 12 = max{3t, 12} = C,(t).
Caso 2:t>1
Es claro que si s < t, entonces 3s < 3t, por tanto, podemos afimar
O, (s) = méax{3s, 12} < max{3t,12} = C\ (¢).

En ambos casos note que se cumple C; (s) < Cy(t), mas aun es claro que K; < Kj, esto
implica que K1K§ < K:]f“ por lo tanto
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K1K§ /t de
0
Kk+1 t

< Cl(L‘?’/ skCy (s)kds
: 0

t t
< L3 5 3 / sFC(t)kds
: 0

RGN0 / o
= | svas
Kl A
B Cl(t)k+1K§+1 tk+1
k! k+1
_ tk+1cl (t)k}+1K§+1
(k+ 1)!
Gyt K
(k+1)!

Por lo tanto para toda n € N se cumple

CIKY

n!

d,(t) <

Veamos que la sucesién {Z,, (t)},,c es una sucesién de Cauchy en L? usando la norma
I 15 := [E(| - |*)]"/? el cuél hace de L? un espacio completo.

Sean m, nN, sin perdida de generalidad, supongamos que m < n, aplicando la desigualdad
del triangulo, podemos afirmmar que para cada 0 < s <t se cumple

120(8) = Z ()2 =

r=m-+1 2
< Z HZT(S) - erl(s)”?
r=m+1
De la (Ecuacién 4.17) sabemos que para cada r =m + 1, m + 2, ..., n se cumple

< Cz(t)TKg‘

0<s<t r!

E [ sup |Z,(s) — Z,_1(s)|?
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Dado que son terminos no negativos, tomando raiz se puede afirmar que

0<u<t

”ZT‘(S) - Zr71<S>H2 < \I £ [ Sup |Zr(8) - Zr71<8)|2

Cy (1) 12K
(r)r/2

Por tanto para cada 0 < s < t tenemos

n

1Z,(8) = Zn($)la < D 1Z,(8) = Zoa ()]

r=m-+1
L Cy(t) PRy
< =
PN

Definimos la siguiente variable

A/ = 02<t)K3 > 0

Reescribiendo el termino de la suma de la siguiente forma

B Ar/2 B AT 1/2
"= GE =\ )

Veamos la convergencia de la serie

o] [ee) AT 1/2
£-5(5)°

r=1 r=1

Considerando el cociente del término a, tenemos
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Ahora tomando el limite cuando r — 0o

7 a 7
lim —L = lim
00 Q. r—oo | r4+1

=0.

Dado que este limite es estrictamente menor que 1, por el criterio de la razén, podemos
afirmar que la serie converge absolutamente esto implica que la serie converge, mas atn,
su cola converge, es decir, para todo € > 0 existe NV € N tal que

5 Cy(t) 12K

<e.
N ()72

Entonces, para todo n,m > N tales que m < n y todo s € [0, ]

S GO S GOTER

R T

r=m-+1 r=N+1

Por lo tanto, podemos afirmar que (Z,,(s)) es una sucesién de Cauchy en L2.

Al ser L?(Q, F,P) un espacio de Banach, vale decir, es un espacio completo con la norma
| - |5, entonces toda sucesién de Cauchy converge en L2. Luego existe Z(s) € L? tal que

lim ||Z,,(s) —Z(s)|, =0, Vse€|0,t]. (4.19)
m—0o0
Cémo m < n, por la desigualdad del triangulo, afirmamos que

12(s) = Zn(s)l2 < 12(5) = Zn ()2 + [Z,(5) = Z ()2

Tomando limite cuando m — oo en ambos lados; por la Ecuacion 4.19 tenemos que
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1im [ Z,,(s) — Z(s)] = 0.

Luego, dado que ya se demostrd que la serie dada por Ecuacién 4.18 converge entonces

, & GWTPKY? & ()P
dim |2, (5) = Zy(s)], < lim Yo R8N 2

r=n+1 (TDT/Q r=n+1 (74!)7’/2
Ademas el termino |Z(s) — Z,,(s)||y no depende de m, por lo tanto
= Gyt 2KG
1Z(s) = Z,(s)]2 < Z O
r=n+1
Consideremos ahora la siguiente notacion
Xn = sup ’Zn(3> - anl (S)|
0<s<t
Queremos encontrar una cota para
1
Pl X, >—|.
Aplicando a X2 Chebyshev-Markov tenemos que
1 2 1 n 2
Pl X, > o | = Pl X; > o < AME[XZ]. (4.20)
Notemos que E[X2] ya esta acotado dado por la Ecuacién 4.17, ast
Cy(t)" K%
FX2] = [E[ S |Z,(5) — Zy_y(5)? | < LLHE
0<s<t n!
De la Ecuacion 4.20, esto implica que
21n n
. ( X 1) o Co?K (4, (K"
T oon n! n!
Co(t)" Ky (4C5 (1) K3)"

Maés atin, sabemos que la serie , esto implica que también coverge,

n! n!

por lo tanto
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Z[P(sup|Z s)—2Z, ()|22171)§Z(402(;>'K3)7L<oo

0<s<t n=1

De aqui es posible usar el Lema de Borell-Cantelli, es decir, podemos afirmar

. 1
(| g 002012 5 ) =0

La estimacion obtenida nos dice que la probabilidad de que las diferencias consecutivas

|Z,,(s)—Z,_1(s)| sean “grandes” (mayores que 1/2™) se vuelve extremadamente pequenia

a medida que n crece, tan pequena que la suma de todas esas probabilidades es finita.

En otras palabras, casi todas las trayectorias de la sucesién (Z,,) se vuelven uniformemente
estables, a partir de algtin momento, los términos de la sucesién ya no cambian mucho
entre si, ni en ningin instante del intervalo [0, ¢].

Esto garantiza que, con probabilidad 1, la sucesién (Z,,(-)) converge uniformemente en
[0, t] a una funcién limite Z(-). Es decir, no solo converge punto a punto, sino que lo hace
de manera controlada en todo el intervalo al mismo tiempo.

Veamos ahora que dicha solucién es tnica, asi supongamos que Z1) = (Z m@))tgo y
7@ = (Z23)(t ))¢=0 son dos soluciones fuertes de la SDE modificada, es decir, procesos
adaptados, cadlag, cuadrado-integrables y que satisfacen, para todo t > 0, las ecuaciones
integrales:

ZO(t) = Z, + /tb(z<i><s—))ds
/ o(2)(s-)) dB(s)

//m s—),2) N(ds, dz),

para i = 1,2, casi seguramente. Queremos ver que Z)(t) = Z(?)(t) para todo t > 0 con
probabilidad 1. Restando las dos ecuaciones de Z") y Z() tenemos que

200~ 200 = [ 1@V (s-) ~ 0z (5] ds
0
+/ [0(ZM)(s=)) — 0(Z?)(s—))] dB(s) (4.21)

// F(ZW(s—),z) — F(Z®¥(s—), )] N(ds, dz).
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Definimos la siguiente notacion

Ab(s) ==b(Z (s— ))—b<Z<2( =)
)

W(s=)) = a(Z®)(s-))
= F(Z"(s=),x) = F(Z?(s—),z)

>
2
&
i
2
N

AF(s,x

~—
.|.

Nuestro objetivo ahora es estimar E [ sup |ZM(t) — 22 (t)|2} Para ello, similar al
0<s<t
procedimiento anterior, elevando al cuadrado la Ecuacién 4.21, tomando supremo y

despues esperanza en el intervalo [0,¢] tenemos la siguiente desigualdad

ziAMQMuj

[
/' (AF(u, 2)| N (du, dz)

sup
0<s<t |z|<c

E | sup |ZM(s) —Z(2>(s)|2} <3 ([E [sup

0<s<t 0<s<t

sup
0<s<t

2] )
Aplicando la desigualdad de Cauchy—Schwarz para integrales, para el primer termino de
la desigualdad tenemos

gs/]AMMRm

0
t
t/\AM)PML
0

Dado que s <t al tomar supremo y valor esperado obtenemos la cota

SAbudu t[EAbUQdu.
/0 (w) ]9/0 NOR

Bajo argumentos similares utilizados anteriormente, afirmamos que el proceso

AﬁAd@dBm)

E [sup

0<s<t
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es una martingala local continua, por tanto, usando la desigualdad maximal de Doob

tenemos
< A4E {

<F [/Ot ]Aa(s)]zds].

2 2

E [sup

0<s<t

/0 " Ao(u)dB(u)

/0 " Ao(s) dB(s)

De aqui, usando la isometria de It

2

F /O Ao(s)dB(s)

Esto implica que

E

/Ot \AG(S)PdSI = /Ot E[|Ao(s)[2ds].

Por lo tanto

2

/0 " Ac(u) dB(u)

t
E [sup < 4/ E[|Ac(s)|*ds].
Ogsgt 0

Podemos afirmar ahora que el siguiente proceso es una martingala local cadlag

/OS /w|<c AF (u,x)N(du, dz).

Nuevamente aplicando la desigualdad maximal de Doob la isometria de It6 para integrales
respecto a N tenemos que

2] 34/0t/ E[|AF(s, 2)|2]v(dz)ds.

lz|<e

E {sup

0<s<t

/ AF(u,z)N(du, dz)
0 Yz|<c

Por lo tanto
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[E[sup |1Z0(s) —Z(2)(s)|2} <3t/t[E[|Ab(s)|2]ds
0

0<s<t

+ 12/ E[|Ac(s,x)|?ds]

+12/ / E[|AF (s, z)|?]v(dx)ds.
|x|<c

Usando y factorizando la variable ya definida C|(¢) tenemos que

E [ sup 201 - 22| <o) [ (fEHAb<s>P]+[EHAa(s>\2]
0

0<s<t
+ /
|

z|<c

E[|AF (s, x)|2]1/(dx)) ds.

De manera similar como ya se hizo en el andlisis de la diferencia entre Z, y Z,,_; en la
iteracion de Picard, haciendo uso de la condicién (Ecuacién 4.2) podemos obtener

[E[Sup |Z0(s) —Z(Q)(s)ﬂ < (K, /0 ' [ sup \Z<1><u>—z<2><u)\2] ds

0<s<t 0<u<s

De esta forma definimos ahora la funcion

D(#) = [ sup |20 (s) - Z<2><s)ﬂ .

0<s<t

Es claro que D(t) > 0 para toda ¢t > 0. Fijando a T' > 0, podemos afirmar que para todo
t € [0,T] la variable C|(t) < C,(T) < 0. Por el Teorema de Gronwall tenemos que

D(t) <0-eS(MEL =, t€10,7).

Por la arbitrariedad de T, tenemos que para todo ¢t > 0 se cumple

D(#) = F [ sup [20(s) — 22 (s)|*| = 0.

0<s<t

Por lo tanto, por propiedad de la esperanza podemos afirmar que

sup |ZM(s) — Z<2)(s)|2 =0 cs.

0<s<t
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Es decir, ZM(s) = Z(®(s) para toda s € [0,], c.s. Definimos

A, = {w: ZW(s,w) = Z?(s,w) para todos € [0,n]}.

Sabemos que P(4,,) = 1 para toda n € N y también

A= ﬂ A, ={w: ZW(t,w) = Z?(t,w) para todo t >0} .
n=1

Por la continuidad de la probabilidad (propiedad de medidas):

P =F ([ 4,) =1

Veamos el caso cuando E[|Z,|?] = oo. En teoria de probabilidad, al truncar una variable
aleatoria podemos cortarla cuando esta estd fuera de un rango finito, reemplazando sus
valores extremos por cero o por el valor de dicho borde. Vamos aproximar Z, por una
sucesién de variables acotadas, para méas adelante garantizar la existencia y unicidad de
una solucién a la Ecuacion 4.1. Definimos el truncamiento de la variable aleatoria Z, de
la forma

28" = Zy - Yz, 1<ns

Donde

1 iz <
Ligjem (@) =47 7 | Zy(w)] < m,
- 0, sil[Zy(w)|>n.

Esto implica que

Z(”)<w> _ Zﬂ(w>7 si ’ZO<W>‘ < n,
0 0, si |Zy(w)] > n.

Esto garantiza que [E[\Zén) 2] < n? < o0, por otro lado, cémo Z, es F- medible y Lz, 1<n}
también lo es, entonces Zé") es F-medible.

Fijemos w € Q tal que |Z,(w)| < oo, por tanto, existe N € N tal que |Z,(w)| < N, de
aqui, para todo n > N, se tiene |Z,(w)| < n, més ain, Zén) (w) = Zy(w). Esto implica

que, para casi todo w € (2, la sucesién (Z(()n) (w)) es constante e igual a Z,(w). Asi, por
definicién de convergencia puntual, tenemos
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lim Zén> (w) = Zy(w), para casi todo w.
n—o0

Por lo tanto

Z(()n) C.S. ZO :

n—o0

entonces para cada n € N la variable Z((Jm es J j-medible y acotada. Lo que nos permite
afirmar que pertenece a L?(Q, &, P). En consecuencia, es posible aplicar los argumentos

anteriores, cuando E[|Z,|?] < oo, para afirmar que existe una tnica solucién fuerte de la

Ecuacién 4.1, digamos Z™), con condicién inicial Zé").

Para cada N € N, definimos el conjunto
Qy = {we Q: |Zy(w)| < N}.

Esto implica, para cualquier m > n > N, se tiene

Z(()m> (W) = Zy(w) = Zém para todo w € Q. (4.22)

Es deicr, en Q, las condiciones iniciales de Z(™) y Z(™ son iguales. Por lo tanto, para
todo t > 0 se cumple que

Zm(t) = 2 (t) cs.

Queremos ver ahora que la sucesién {Z"},, ., es uniformemente de Cauchy en probabilidad,
es decir, dado € > 0y § > 0, existe NV € N tal que para todo m,n > N, se cumple

P <sup |ZM) () — Z) (t)| > 5) <e.

>0
Notemos que de los conjuntos anteriormente definidos, cumplen que 5 C Q5. Por

otro lado, al ser Z;, una variable aleatoria real, entonces P(|Z,| < co) =1 . Asi al ser Qp
una sucesién de conjuntos crecientes, se tiene

U 2 = {12l < o0}
n=1

Por la continuidad de la probabilidad, podemos afirmar lim P(, ) = 1. Esto implica

. . n—oo
que para cualquier € > 0, existe N € N tal que
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P(Qy) > 1—e. (4.23)

De Ecuacién 4.22 sabemos que
sup |[Z(t) — ZM™ (1) =0 en Qy
>0

Por lo tanto, si la diferencia es distinta de cero, es decir, para § > 0, solo puede ocurrir
fuera de Qy, esto es, ocurre en el complemento de §2,. Entonces

{w csup |20V (t) — Z0) (1)) > (5} C Q%
t>0
Por propiedad basica de la probabilidad, podemos afirmar

P (sup |ZM) () — Z)(t)] > 5) < P(Q%).

t>0

Mas atn, notemos que P(Q%) =1 — P(Qy), por la Ecuacién 4.23, entonces P(2%,) < e.
De la ecuacién anterior, podemos afirmar

t>0

[P(sup\Z(”)(t) — Zm ()] > 5) <e, Vmn>N

Por lo tanto, la sucesién (Z™), ., es uniformemente de Cauchy en probabilidad. Al estar
en L? podemos afirmar que existe un proceso Z = {Z(t)},>, de tal forma que

sup |2 () — Z(t)] —— 0.

tZO n—oo

Por el teorema de convergencia de sucesiones de Cauchy en probabilidad, para la sucesiéon
es posible extraer una subsucesién {Z,, } tal que se cumple

sup |20 (¢) — Z(£)] —= 0.

>0 k—o0

De aqui, notemos que por construccién, cada Z("r) posee trayectorias cadlag, y la
convergencia es uniforme casi segura, entonces el limite Z admite una versién cadlag. Por
otro lado, dado que cada Z"+) es adaptado y su convergencia al proceso Z es uniforme,
basta notar que la adaptabilidad de un proceso se converva bajo convergencia puntual,
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en nuestro caso, convergencia uniforme casi seguramente, por tanto podemos afirmar que
el limite Z es adaptado.

Analicemos ahora la unicidad de dicha solucién. Procediendo por contradiccién, suponga-
mos que existe otra solucién fuerte Z’ = (Z’(t)),~, con la misma condicién inicial Z,.
Fijando a N € N, consideremos al conjunto (2 N,iya sabemos que en este conjunto la
condicién incial es acotada y ademés por el caso E[|Z,|?] < oo la solucién es tnica. Por
lo tanto

Z'(t)(w) = Zy(t)(w) paratodot>0, VweQycs.

para cualquier M > N, donde Z;, es la solucién con condicién inicial truncada Z (M) — Z,
en . Asumamos que esto falla para algin M > N, es decir, existe un conjunto A C Qp
con P(A) > 0 tal que Z’(t)(w) # Z,,(t)(w) con w € A. Podemos definir un nuevo proceso,
llamemos a este Z7},;, mediante

Z'(t)(w), weEA,

Zub)w) = {ZM(t)(w) we A

Dado que A C Qp, entonces A € F,, podemos afirmar que Z” es adaptado, pues Z’
y ZM) son dos procesos adaptados en un conjunto F o-medible. Luego, al ser Z” la
combinacién de dos funciones cadlag entonces Z” es cadlag.

Notemos que si w € A C Qy C Q,,, entonces

Z1,(0)(w) = Z' (0)(w) = Zy(w) = Z5™ (w),

por otro lado, si w ¢ A, esto implica que

Z3(0)(w) = ZM(0)(w) = Zy(w),

en ambos casos se tiene que Z7,(0) = ZM)(0) con w € A casi seguramente.

Entonces Z},y Z (M) son dos soluciones de la Ecuacién 4.1 con la misma condicién inicial,

por construccion, en el conjunto A, se tiene que Z},(t) # ZM)(t) para algin t. Lo cual
es una contradiccién al caso cuando E[|Z,]?] < oo donde se establece la unicidad casi
segura de la solucién fuerte.

Dado que al suponer P(A) > 0 nos lleva a una contradiccién, podemos afirmar que
P(A) =0, es decir, Z’(t) = ZM)(t) para todo t > 0, casi seguramente en 2. Esto vale
para todo N € N, como
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P(QQN) -

podemos concluir

P(Z'(t) = Z(t) para todo t>0) = 1.

Por lo tanto, la solucién fuerte es tnica casi seguramente
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5 Estabilidad media cuadratica

Consideremos la ecuacién diferencial estocastica con saltos

dX(t) = aX (t—)dt + bX (t—)dW (t) + cX(t—)dN(t),  t>0, (5.1)

con condicién inicial X (0) = X, donde a,b, ¢ € R son constantes, W (t) es un movimiento
browniano estdndar y N(¢) es un proceso de Poisson con intensidad A > 0, definido sobre
un espacio de probabilidad filtrado (2, 7, {7, },~¢,P).

Nuestro objetivo es presentar el proceso de deduccién de la solucién explicita de la
Ecuacién 5.1. La herramienta que usaremos para el analisis de la ecuacién diferencial
estocastica con saltos serd el lema de Itd para procesos de difusiéon con saltos. Con esto,
consideremos un proceso estocastico {Y, },~, de la forma

dY (t) = p(t)dt + o(t)dW (t) +~v(t)dN (1),
donde pu(t),o(t),~(t) son procesos adaptados, W (¢) es un movimiento browniano y N (t)

es un proceso de Poisson. Para una funcién f € C2{R" x R*} el diferencial estocéstico
de f(t,Y(t)) estd dado por

of

df(t,Y(t)) = a(t,Y(lt—))dt
+ gi:(t, Y (t—))[p(t)dt + o(t)dW (t)]
+ ;gy{(t, Y (t—))o(t)?dt

+ (&Y (=) + () — f(£, Y (E=))]dN (D).

Notemos que el dltimo término representa el cambio finito en f cuando ocurre unn salto
de tamano y(t) en Y.

Para nuestro caso, para facilitar el tratamiento de los saltos, vamos a introducir el proceso
de Poisson compensado definido por
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Sabemos que este preceso es una martingala con esperanza E[N(t)] = 0, varianza
E[|N(¢)]?] = At, adem4s los incrementos en dicho proceso son independientes.

Teorema 5.1. Consideremos la ecuacion diferencial estocdstica lineal con saltos

dX(t) = aX (t—)dt + bX(t—)dW (t) + cX(t—)dN(t), >0, (5.2)

donde a,b,c € R son constantes, W (t) es un movimiento browiniano y N (t) es un proceso
de Poisson con intensidad A > 0. Definimos el siguiente pardmetro de estabilidad

l:=2a+b%+ \c(2+ ),

y se sabe que la solucion andlitica es estable en media cuadrdtica, es decir
lim E[|X(8)]?] =0,
t—o0

sty solo si 1 < 0.

Sea At > 0 un tamano de paso fijo y 6 € [0,1] el paramétro del método theta compensado
1
estocastico (CSTM). Al aplicar dicho método a Ecuacion 5.2, si 3 < 60 <1, entonces

el método es estable en media cuadrdtica, es decir, para todo At > 0 se cumple que las
aproximaciones numéricas heredan la estabilidad de la solucion andlitica siempre que
1 <0.

1
Si0<6< 3 el método es estable en media cuadrdtica si y solo si el tamano del paso

satisface

—l

A T2y a0

Demostracion. Coémo primer paso, comenzaremos aplicando el método theta compensado
estocastico a la Ecuacién 5.2, con condicion inicial X (0) = X,. Para aplicar dicho método
(CSTM) definimos el proceso de Poisson compensado de la forma N (t) := N(t) — At, el
cudl es una martingala y satiisface E[N(#)] = 0 y E[[N(¢)]2] = At. Por lo tanto, esto nos
permite reescribir la Ecuacién 5.2 de la forma equivalente

dX(t) = aX (t—)dt + bX (t—)dW (t) + cX (t—)dN (t)
= aX(t=)dt + bX (t=)dW (t) + X (t—)d(N(t) + At) -
— aX (t—)dt + bX (t—)dW (t) + X (t—)dN () + AeX (t—)dt (5:3)

= (a4 X)X (8)dt + bX (t—)dW (t) + X (t—)dN (¢).
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Para un tamano de paso constante At > 0, definimos la malla ¢, = nAt con n € N.
El método (CSTM) aplicado a la Ecuacién 5.3 genera un sucesién de aproximaciones
Y, ~ X(t,) mediante la ecuacién de diferencias implicita dada por

Y, =Y, + (1—0)Atla+ A)Y,

! N 5.4
+0At(a+ )Y, . + VY, AW, +cY, AN,, (54)

donde 6 € [0,1] es un parametro del método, los incrementos estocdsticos se definen de
la forma

V=
I
=

A (tpir) =W(E,)
AN, : = N(t, 1) = N(t,).

Notemos que, dichos incrementos son independientes entre si, ademas satifacen que

E[AW,] = E[AN,] = 0, E[]AW, |?] = At y E[|AN, |2] = AAL.

I
2

Reorganizando la Ecuacién 5.4 de tal forma que podamos expresar de forma explicita el
término Y, en términos de Y, , obtenemos

Y, 1 —0At(a+ Ae)Y, . =Y, + (1 —0)At(a + \o)Y,
+bY, AW, +¢Y, AN,
De aqui, factorizando el término Y,, . ; del lado izquierdo y el término Y,, del lado derecho
(1—=0At(a+ Xe))Y, 1 =Y, + (1 —0)At(a+ Ac)Y,

+bY,, AW, +¢Y, AN, (5.5)
=1+ (1 —60)At(a+ Ac) + bAW, + cAN, Y.

Dado que por hipétesis sabemos que [ = 2a + b? + Ae(2 + ¢) < 0, podemos notar

2a + b2 4+ Ac(2 + ¢) = 2a + 2Xc + b? + Ac?
=2(a+ Xc) +b% 4+ \e? <0,

es claro que b + \c? > 0, esto implica que (a + Ac) < 0. Con esto, podemos afirmar que
para At lo suficientemente pequeno, el término 1 — 0At(a + Ac) no se anula y es positivo.

Por otro lado, veamos la esperanza del segundo momento de Ecuacién 5.5. Elevando al
cuadrado y obteniendo el valor esperado, tenemos
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14 (1— 0)At(a+ Ac)

) (5.6)
E[]Y,[2).

(1= 0At(a + X))’ E[|Y,, 1 *] = E [

+bAW,, + ¢AN,,

Vamos a desarrollar la esperanza del término estocéstico. Para faciliatr el proceso,
definimos la siguiente notacién

A:=14+(1—-0)At(a+ Ac)
B :=bAW,
C:= cAf\fn.

Notemos que A es una constante determinista, mientras que B y C son variables aleatorias.
Por tanto, aplicando la linealidad de la esperanza, el término estocéastico de la Ecuacién 5.6
queda de la forma

E[|[A+ B+ C|*] = E[A%? + B2 + C?
+2AB + 2AC + 2BC]
= E[A?] + E[B?] + E[C?]
+ E[2AB] + E[2AC] + E[2BC].

(5.7)

Utilizando las propiedades de los incrementos independientes, podemos afirmar que E[B] =
bE[AW,] = 0y E[C] = cE[AN,] = 0. Ademés, E[2AB] = 2AbE[AW, ] = 0 y E[2AC] =
2Ac[E[A]’\7n] = 0. Luego, por la independiencia entre el movimiento browniano y el proceso
de Poisson compensado, se cumple E[BC| = beE[AW,, AN, ] = beE[AW, ]E[AN, ] = 0.

Por otro lado, E[B2] = b2E[(W,,)?] = b2At y E[C?] = ¢E[(N,,)?] = ¢2AAt. Por lo tanto,

de la Ecuacién 5.7 tenemos

E[|[A+ B+ C|*] = A2 + V> At + A2 A¢
= (14 (1 —0)At(a+ Xc))?
+ b2AL + A2 AL.

Sustituyendo esto en Ecuacién 5.6 tenemos

(1—0At(a+ Xc))’E[|Y, 1] = [(1 + (1 —0)At(a + Ae))?

+B2AL+ A2AL| E[|Y, ]2).
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Notemos que la Ecuacién 5.8 describe el cambio del segundo momento de la soluciéon
numérica. Ahora bien, para que el método sea estable en media cuadratica, es necesario
que la sucesién E[|Y,,|?] sea decreciente y tienda a cero cuando n tiende a infinito. Esto
ocurre si y solo si

(14 (1 —0)At(a + Ac))? + b2 At + A2 At

(1— 0At(a 1 Ao))? <1 (5.9)

Recordemos que anteriormente ya se menciond que el término 1 — 6At(a + Ac) es no nulo
y positivo, por lo que es posible multiplicar la Ecuaciéon 5.9 por el denominador y seguir
conservando la desigualdad, es decir

(14 (1 —0)At(a + Ac))? + b2At + A\2At < (1 — 0At(a + Ac))? (5.10)

Para facilitar la notacién, definimos la variable K := a + Ac. Ademads, expandiendo la
expresion del lado derecho de la desigualdad de la forma

(1—0At(a+ Ac))? = (1 — 0ALK)?
=1—20Atk + 0°At?K?.

De igual forma, al extender el término al cuadrado del lado izquierdo de la Ecuacién 5.10

(1+ (1 —=0)At(a+ Ac))?> = (1 + (1 — H)ALK)?
=1+4+2(1—-0)AtK + (1 —0)*At*K?.

De esta manera, ordenando los terminos, la Ecuacién 5.10 se expresa como se sigue

1+2(1—0)AtK + b2 At

5.11
+ AAL+ (1 — 0)2A12K? <1 —20AtK + 0?At? K2, (5.11)

Restando el termino 1 en ambos lados de la desigualdad, ademas reordenando adecuada-
mente y agrupando los términos con factores At y At?, tenemos

— 20K At —2(1 — ) KAt — b2 At
— AAt + PP K2AL? — (1 —0)2K2At2 > 0
(—20K —2(1 —0)K — b* — \c?) At
+ (02 — (1 —-0))K2At2 > 0
(—20K — 2K + 20K — b? — \c?)At
+ (62— (1—20+62)K2At? >0
(—2K —b% — A?)At + (20 — 1) K2At? > 0
(20 — 1)AtPK? — (2K + b* + Ac?)At > 0.

(5.12)
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Del parametro de establilidad [, notemos

I =2a+b%+ (2 +¢)
=2a +b% +2\c + \c?
= 2a + 2X\c + b? + \c?
=2(a+ Ae) +b% + Ae?
= 2K + b + M\

Por lo tanto, sustituyendo [ en Ecuacién 5.11 se tiene

(20 — 1)A2K? — IAt > 0

Dado que At > 0, es posible factorizar un término de la forma
At[(20 — 1)AtK? — 1] > 0,
mas aun

(20 — 1)AtK? — 1> 0.

Despejando de tal forma que podamos expresar la desigualdad anterior en términos de
—![ tenemos

—1>—(20—1)(a+ Ac)2At = (1 —20)(a + Ac)? At (5.13)
1 L ,
Cuando 0 = 2 esto implica 1 — 20 = 0, asi
0=(1-20)(a+ \ec)?At < —1
1
Por hipotesis [ < 0, de aqui 0 < —[. Por lo tanto, el método es estable cuando 6 = 3

1
Luego, cuando 3 < < 1, esto implica que 1—26 < 0. Para este caso (1—260)(a+\c)2At <

0, de igual forma —I > 0, entonces

(1 —20)(a+ Xe)?At <0 < —I,

en consecuencia, el método sigue siendo estable bajo las condiciones de la solucién
analitica.

43



1
Por 1ltimo, para el caso 0 < 6 < 2 esto implica, (1 —260)(a + Ac)? > 0, por lo que la

FEcuacién 5.13 se cumple si y solo si

—l
(1 —20)(a+ Xc)?’

At <
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