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Resumen


Esta tesis presenta






1 Introducción


1.1 Introducción del modelo de Langevin y su aplicación a terremotos

El modelo de Langevin fue propuesto por Paul Langevin en 1908 para describir el movimiento browniano de partículas suspendidas en un fluido. Este modelo captura la dinámica de una partícula bajo la influencia de una fuerza determinista (como la fricción) y una fuerza aleatoria (ruido blanco gaussiano), y se expresa mediante una ecuación diferencial estocástica de la forma:

dv(t)=−γv(t)dt+2DdW(t)(1.1) 
dv(t) = -\gamma v(t)\,dt + \sqrt{2D}\,dW(t) 
 \qquad(1.1)

donde de Equation 1.1:


	v(t)v(t): velocidad de la partícula,

	γ\gamma: coeficiente de fricción,

	DD: coeficiente de difusión (intensidad del ruido térmico),

	W(t)W(t): movimiento browniano estándar.



Con el tiempo, este modelo fue generalizado para describir sistemas que combinan comportamientos deterministas con fluctuaciones aleatorias, incluyendo fenómenos físicos, biológicos, químicos y financieros.

En el contexto geofísico, el modelo de Langevin se ha extendido para modelar la dinámica de fallas sísmicas. Para representar eventos sísmicos abruptos —como rupturas en la corteza terrestre— se incorpora un término adicional de saltos, modelados mediante un proceso de Poisson o, más generalmente, un proceso de Lévy. El modelo extendido es:

dv(t)=[−γv(t)+Fext(t)]dt+2DdW(t)+dJ(t),
dv(t) = [-\gamma v(t) + F_{\text{ext}}(t)]\,dt + \sqrt{2D}\,dW(t) + dJ(t),


donde:


	(Fext(t))( F_{\text{ext}}(t) ): fuerza externa acumulada, por ejemplo, por tectónica de placas,

	(J(t))( J(t) ): proceso de saltos, que representa eventos súbitos (rupturas sísmicas),

	El resto de símbolos mantienen su significado anterior.



Una formulación típica para los saltos es:

J(t)=∑i=1N(t)Yi,
J(t) = \sum_{i=1}^{N(t)} Y_i,


donde:


	(N(t))( N(t) ) es un proceso de Poisson de tasa (λ>0)(\lambda> 0 ),

	(Yi)( Y_i ) representa la magnitud del i-ésimo salto (aleatoria, por ejemplo, con distribución exponencial o normal truncada).



Este modelo se denomina Ecuación de Langevin con saltos y pertenece a la clase de ecuaciones diferenciales estocásticas impulsadas por procesos de Lévy.

Su aplicación en geofísica permite modelar:


	El movimiento gradual de una falla mediante la fricción y ruido térmico,

	La ocurrencia de microtemblores,

	La irrupción de terremotos mayores como saltos discontinuos.



Este enfoque ofrece una base matemática para la simulación y el análisis estadístico de secuencias sísmicas, incluyendo la estimación de probabilidades de ocurrencia, clasificación de eventos y simulación de trayectorias dinámicas realistas.





2 Preliminares


2.1 Análisis Real y Funcional (Base Analítica).


Definition 2.1 Espacio métrico

Llamamos espacio métrico al par (X,d)(X, d), donde XX es un conjunto no vacío y d:X×X→[0,∞)d: X \times X \to [0, \infty) es una función (llamada métrica) que satisface, para todo x,y,z∈Xx, y, z \in X:


	d(x,y)=0⇔x=yd(x, y) = 0 \iff x = y,


	d(x,y)=d(y,x)d(x, y) = d(y, x),


	d(x,z)≤d(x,y)+d(y,z)d(x, z) \leq d(x, y) + d(y, z).







Definition 2.2 Sucesión de Cauchy.

Una sucesión (xn)n∈ℕ(x_n)_{n \in \mathbb{N}} en un espacio métrico (X,d)(X, d) es una sucesión de Cauchy si para todo ε>0\varepsilon > 0, existe N∈ℕN \in \mathbb{N} tal que

m,n≥N⟹d(xm,xn)<ε.
m, n \geq N \implies d(x_m, x_n) < \varepsilon.





Definition 2.3 Espacio métrico completo

Un espacio métrico (X,d)(X, d) se dice completo si toda sucesión de Cauchy en XX converge a un límite en XX.




El espacio ℝ\mathbb{R} con la métrica d(x,y)=|x−y|d(x, y) = |x - y| es completo.




Definition 2.4 σ\sigma-álgebra de Borel.

La σ\sigma-álgebra de Borel en ℝ\mathbb{R}, denotada ℬ(ℝ)\mathcal{B}(\mathbb{R}), es la σ\sigma-álgebra generada por los intervalos abiertos de ℝ\mathbb{R}.




Definition 2.5 Función Borel Medible

Una función f:ℝ→ℝf: \mathbb{R} \to \mathbb{R} es Borel-medible si para todo B∈ℬ(ℝ)B \in \mathcal{B}(\mathbb{R}), se tiene que f−1(B)∈ℬ(ℝ)f^{-1}(B) \in \mathcal{B}(\mathbb{R}).




Theorem 2.1 Toda función continua f:ℝ→ℝf: \mathbb{R}\to \mathbb{R} es Borel-medible.




Proof. Si ff es continua, la preimagen de cualquier conjunto abierto es abierta. Como los abiertos generan ℬ(ℝ)\mathcal{B}(\mathbb{R}) y la preimagen conmuta con uniones, intersecciones numerables y complementos, se sigue que f−1(B)∈ℬ(ℝ)f^{-1}(B) \in \mathcal{B}(\mathbb{R}) para todo B∈ℬ(ℝ)B \in \mathcal{B}(\mathbb{R}).





2.2 Espacios L2L^2 y convergencia.


Definition 2.6 Sea (Ω,ℱ,ℙ)(\Omega,\mathcal{F},\mathbb{P}) un espacio de probabilidad. EL espacio L2(Ω,ℱ,ℙ)L^2(\Omega, \mathcal{F}, \mathbb{P}) se define como

L2={X:Ω→ℝ∣X es ℱ-medible y 𝔼[|X|2]<∞}.
L^2 = \left\{ X: \Omega \to \mathbb{R} \mid X \text{ es } \mathcal{F}\text{-medible y } \mathbb{E}[|X|^2] < \infty \right\}.





Definition 2.7 Para X∈L2X \in L^2, su norma se define como

∥X∥L2=(𝔼[|X|2])1/2.
\|X\|_{L^2} = \left( \mathbb{E}[|X|^2] \right)^{1/2}.





Definition 2.8 Una sucesión (Xn)n∈ℕ⊂L2(X_n)_{n \in \mathbb{N}} \subset L^2 converge en L2L^2 a X∈L2X \in L^2 si

limn→∞∥Xn−X∥L2=0,
\lim_{n \to \infty} \|X_n - X\|_{L^2} = 0,


es decir, limn→∞𝔼[|Xn−X|2]=0\lim\limits_{n \to \infty} \mathbb{E}[|X_n - X|^2] = 0.





2.3 Espacios de Banach


Definition 2.9 Un espacio de Banach es un espacio vectorial normado (X,∥⋅∥)(X, \|\cdot\|) que es completo con respecto a la métrica inducida por la norma, es decir, toda sucesión de Cauchy en XX converge en XX.




El espacio L2(Ω,ℱ,ℙ)L^2(\Omega, \mathcal{F}, \mathbb{P}) es un espacio de Banach (de hecho, un espacio de Hilbert).




Definition 2.10 Una sucesión (xn)n∈ℕ(x_n)_{n \in \mathbb{N}} en un espacio normado (X,∥⋅∥)(X, \|\cdot\|) es de Cauchy si para todo ε>0\varepsilon > 0, existe N∈ℕN \in \mathbb{N} tal que

m,n≥N⟹∥xm−xn∥<ε.
m, n \geq N \implies \|x_m - x_n\| < \varepsilon.





En ℝ\mathbb{R}, esto se reduce a: (xn)(x_n) es de Cauchy si |xm−xn|<ε|x_m - x_n| < \varepsilon para m,nm, n suficientemente grandes.





2.4 Desigualdades


Proposition 2.1 Para cualesquiera a1,…,an∈ℝa_1, \dots, a_n \in \mathbb{R},

(∑i=1nai)2≤n∑i=1nai2.
\left( \sum_{i=1}^n a_i \right)^2 \leq n \sum_{i=1}^n a_i^2.


En particular, para n=3n = 3,

(a+b+c)2≤3(a2+b2+c2).
(a + b + c)^2 \leq 3(a^2 + b^2 + c^2).





Proposition 2.2 Sean f,g:[0,T]→ℝf, g: [0, T] \to \mathbb{R} funciones medibles tales que f,g∈L2([0,T])f, g \in L^2([0, T]). Entonces

|∫0Tf(s)g(s)ds|≤(∫0T|f(s)|2ds)1/2(∫0T|g(s)|2ds)1/2.
\left| \int_0^T f(s) g(s) \, ds \right| \leq \left( \int_0^T |f(s)|^2 \, ds \right)^{1/2} \left( \int_0^T |g(s)|^2 \, ds \right)^{1/2}.





Corollary 2.1 Si g≡1g \equiv 1, entonces para todo t∈[0,T]t \in [0, T],

(∫0tf(s)ds)2≤t∫0t|f(s)|2ds.
\left( \int_0^t f(s) \, ds \right)^2 \leq t \int_0^t |f(s)|^2 \, ds.








3 Objetivos


3.1 Los objetivos de este proyecto se estarán afinando dentro de las proximas semanas.





4 Existencia y unicidad fuerte


Theorem 4.1 Sea (Ω,ℱ,(ℱt)t≥0,ℙ)(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P}) un espacio de probabilidad filtrado que satisface las hipótesis usuales. Consideremos la ecuación diferencial estocástica modificada (sin saltos grandes):

dZ(t)=b(Z(t−))dt+σ(Z(t−))dB(t)+∫|x|<cF(Z(t−),x)Ñ(dt,dx),t≥0,(4.1)
\begin{aligned}
dZ(t) ={}& b(Z(t-)) \, dt \\
         &+ \sigma(Z(t-)) \, dB(t) \\
         &+ \int_{|x| < c} F(Z(t-), x) \, \widetilde{N}(dt, dx), \qquad t \geq 0,
\end{aligned}
 \qquad(4.1)

con condición inicial Z(0)=Z0Z(0) = Z_0, donde B(t)B(t) es un movimiento browniano estándar unidimensional (r=1r=1); N(dt,dx)N(dt, dx) es una medida aleatoria de Poisson definida en ℝ+×(ℝ\{0})\mathbb{R}_+ \times (\mathbb{R} \setminus \{0\}) con medida de intensidad ν(dx)\nu(dx); Ñ(dt,dx)=N(dt,dx)−ν(dx)dt\widetilde{N}(dt, dx) = N(dt, dx) - \nu(dx)\,dt denota la correspondiente medida compensada; c∈(0,∞]c \in (0, \infty] es un umbral fijo que separa los saltos pequeños de los grandes; y Z0Z_0 es una variable aleatoria ℱ0\mathcal{F}_0-medible, independiente del ruido estocástico.

Supongamos que los coeficientes b:ℝ→ℝb: \mathbb{R} \to \mathbb{R}, σ:ℝ→ℝ\sigma: \mathbb{R} \to \mathbb{R} y F:ℝ×ℝ→ℝF: \mathbb{R} \times \mathbb{R} \to \mathbb{R} son funciones medibles que satisfacen las siguientes condiciones:


4.0.0.1 (C1) Condición de Lipschitz:

Existe una constante K1>0K_1 > 0 tal que, para todo y1,y2∈ℝy_1, y_2 \in \mathbb{R},

|b(y1)−b(y2)|2+|σ(y1)−σ(y2)|2+∫|x|<c|F(y1,x)−F(y2,x)|2ν(dx)≤K1|y1−y2|2.(4.2)
\begin{aligned}
|b(y_1) - b(y_2)|^2 & + |\sigma(y_1) - \sigma(y_2)|^2\\ 
& + \int_{|x| < c} |F(y_1, x) - F(y_2, x)|^2 \, \nu(dx) \\
&\leq K_1 |y_1 - y_2|^2.
\end{aligned}
 \qquad(4.2)



4.0.0.2 (C2) Condición de crecimiento lineal:

Existe una constante K2>0K_2 > 0 tal que, para todo y∈ℝy \in \mathbb{R},

|b(y)|2+|σ(y)|2+∫|x|<c|F(y,x)|2ν(dx)≤K2(1+|y|2).(4.3)
|b(y)|^2 + |\sigma(y)|^2 + \int_{|x| < c} |F(y, x)|^2 \, \nu(dx)
\leq K_2 \bigl(1 + |y|^2 \bigr).
 \qquad(4.3)

Bajo las hipótesis anteriores, existe una única solución fuerte Z=(Z(t))t≥0Z = (Z(t))_{t \geq 0} de la ecuación (Equation 4.1) tal que:


	ZZ es un proceso adaptado y cádlág (continuo por la derecha con límites por la izquierda),

	La solución es única casi seguramente, esto es, si (Z′)(Z') es otra solución, entonces ℙ(Z(t)=Z′(t) para todo t≥0)=1.(4.4)
 \mathbb{P}\bigl(Z(t) = Z'(t) \text{ para todo } t \geq 0\bigr) = 1.
  \qquad(4.4)







Proof. Queremos ver la existencia de una solución Z=(Z(t))t≥0Z=(Z(t))_{t\geq 0} para la ecuación (Equation 4.1) con condición inicial Z(0)=Z0Z(0)=Z_0. Bajo las hipótesis (Equation 4.2) y (Equation 4.3) para los coeficientes bb, σ\sigma y FF. Analizaremos primero el caso cuando 𝔼[|Z0|2]<∞\mathbb{E}[|Z_0|^2]<\infty. Dado que la ecuación estocástica de nuestro caso posee un movimiento browniano BB, es decir, ruido estocástico y una medida de Poisson compensada, dada por Ñ\widetilde{N}, para esto utilizaremos la iteración de Picard construyendo una sucesión de procesos estocásticos a partir de la condición inicial. Definiendo la suceción de la siguiente forma:

Z0(t):=Z0,∀t≥0.
    Z_0(t) :=Z_0, \, \, \forall t\geq 0.


Para n≥1n\geq 1

Zn+1(t):=Z0+∫0tb(Zn(s−))ds+∫0tσ(Z(s−))dB(s)+∫0t∫|x|<cF(Zn(s−),x)Ñ(ds,dx).
    \begin{aligned}
        Z_{n+1}(t) := Z_0 & +\int _0^t b(Z_n(s-))ds+\int_0^t \sigma(Z(s-))dB(s)\\ 
        & + \int_0^t \int _{|x|<c} F(Z_n(s-),x)\widetilde{N}(ds,dx).
    \end{aligned}


Demostraremos que el proceso ZnZ_n es un proceso adaptado y con trayectorias Cádlág. Consideremos la diferencia Z1(t)−Z0(t)Z_1(t)-Z_0(t). Por la iteración de Picard tenemos:

Z1(t)=Z0(t)+∫0tb(Z0(s−))ds+∫0tσ(Z0(s−))+∫0t∫|x|<cF(Z0(s−),x)Ñ(ds,dx).
    \begin{aligned}
        Z_1(t) = Z_0(t) & + \int_0^t b(Z_0(s-))ds +\int_0^t\sigma(Z_0(s-))\\ 
        & +\int_0^t \int_{|x|<c} F(Z_0(s-),x)\widetilde{N}(ds,dx).
    \end{aligned}


Dado que Z0(t)=Z0Z_0(t)=Z_0 para todo t≥0t\geq 0, entonces,

Z1(t)−Z0=∫0tb(Z0)ds+∫0tσ(Z0)dB(s)+∫0t∫|x|<cF(Z0,x)Ñ(ds,dx).
    \begin{aligned}
        Z_1(t)-Z_0 = \int_0^t b(Z_0) ds & + \int_0^t \sigma(Z_0)dB(s)\\ 
        & + \int_0^t\int_{|x|<c} F(Z_0,x)\widetilde{N}(ds,dx). 
    \end{aligned}


Considerando la desigualdad

(a+b+c)2≤3(a2+b2+c2).(4.5)
(a+b+c)^2\leq 3(a^2+b^2+c^2).
 \qquad(4.5)

Tomando valor absoulto y elevando al cuadrado la expreción anterior tenemos que

|Z1(t)−Z0|2=|∫0tb(Z0)ds+∫0tσ(Z0)dB(s)+∫0t∫|x|<cF(Z0,x)Ñ(ds,dx)|2≤3((∫0tb(Z0)ds)2+(∫0tσ(Z0)dB(s))2+(∫0t∫|x|<cF(Z0,x)Ñ(ds,dx))2).
    \begin{aligned}
|Z_1(t)-Z_0|^2
&= \Bigg|
      \int_0^t b(Z_0)\,ds
      + \int_0^t \sigma(Z_0)\,dB(s) \\
&\qquad\quad
      + \int_0^t\!\!\int_{|x|<c} F(Z_0,x)\,\widetilde{N}(ds,dx)
   \Bigg|^2 \\[0.3em]
&\le 3\Bigg(
      \left(\int_0^t b(Z_0)\,ds\right)^2
      + \left(\int_0^t \sigma(Z_0)\,dB(s)\right)^2 \\
&\qquad\quad
      + \left(\int_0^t\!\!\int_{|x|<c} F(Z_0,x)\,\widetilde{N}(ds,dx)\right)^2
   \Bigg).
\end{aligned}


Para controlar de manera uniforme en todo el intervalo [0,t][0,t] tomamos el supremo sobre todo el intervalo, además usando propiedades del supremos podemos obtener

sup0≤s≤t|Z1(s)−Z0|2≤sup0≤s≤t(3((∫0sb(Z0)ds)2+(∫0sσ(Z0)dB(s))2+(∫0s∫|x|<cF(Z0,x)Ñ(ds,dx))2))=3(sup0≤s≤t(∫0sb(Z0)ds)2+sup0≤s≤t(∫0sσ(Z0)dB(s))2+sup0≤s≤t(∫0s∫|x|<cF(Z0,x)Ñ(ds,dx))2).
\begin{aligned}
\sup\limits_{0\leq s\leq t}|Z_1(s)-Z_0|^2
&\leq \sup\limits_{0\leq s\leq t}\Bigg(3\Bigg(
      \left(\int_0^s b(Z_0)\,ds\right)^2
      + \left(\int_0^s \sigma(Z_0)\,dB(s)\right)^2 \\
&\qquad\quad
      + \left(\int_0^s\!\!\int_{|x|<c} F(Z_0,x)\,\widetilde{N}(ds,dx)\right)^2
   \Bigg)\Bigg)\\
& = 3\Bigg(\sup\limits_{0\leq s\leq t}\left(\int_0^s b(Z_0)\,ds\right)^2 + \sup\limits_{0\leq s\leq t} \left(\int_0^s \sigma(Z_0)\,dB(s)\right)^2 \\ 
&\qquad\quad 
    + \sup\limits_{0\leq s\leq t} \left(\int_0^s\!\!\int_{|x|<c} F(Z_0,x)\,\widetilde{N}(ds,dx)\right)^2\Bigg).
\end{aligned}


Tomando valor esperado de ambos lado y usando la linealidad, tenemos que

𝔼[sup0≤s≤t|Z1(s)−Z0|2]≤𝔼[3(sup0≤s≤t(∫0sb(Z0)ds)2+sup0≤s≤t(∫0sσ(Z0)dB(s))2+sup0≤s≤t(∫0s∫|x|<cF(Z0,x)Ñ(ds,dx))2)]=3(𝔼[sup0≤s≤t(∫0sb(Z0)ds)2]+𝔼[sup0≤s≤t(∫0sσ(Z0)dB(s))2]+𝔼[sup0≤s≤t(∫0s∫|x|<cF(Z0,x)Ñ(ds,dx))2]).(4.6)
\begin{aligned}
\mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t}|Z_1(s)-Z_0|^2\Bigg]
& \leq \mathbb{E}\Bigg[3\Bigg(\sup\limits_{0\leq s\leq t}\left(\int_0^s b(Z_0)\,ds\right)^2\\
&\qquad   
    + \sup\limits_{0\leq s\leq t} \left(\int_0^s \sigma(Z_0)\,dB(s)\right)^2 \\ 
&\qquad\quad
    + \sup\limits_{0\leq s\leq t} \left(\int_0^s\!\!\int_{|x|<c} F(Z_0,x)\,\widetilde{N}(ds,dx)\right)^2\Bigg)\Bigg]\\
& = 3\Bigg( \mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t}\left(\int_0^s b(Z_0)\,ds\right)^2\Bigg]\\ 
&\qquad
    + \mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t} \left(\int_0^s \sigma(Z_0)\,dB(s)\right)^2\Bigg]\\
&\qquad\quad
    +\mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t} \left(\int_0^s\!\!\int_{|x|<c} F(Z_0,x)\,\widetilde{N}(ds,dx)\right)^2\Bigg]\Bigg).
\end{aligned}
 \qquad(4.6)

Trabajaremos término por termino; así notemos que la siguiente integral es de Lebesgue

∫0sb(z0)du=b(z0)∫0sdu=b(z0)⋅s
    \int_0^s b(z_0)du = b(z_0) \int_0^s du = b(z_0)\cdot s


Por lo tanto

sup0≤s≤t(∫0sb(Z0)du)2=sup0≤s≤t(b(Z0)⋅s)2=sup0≤s≤tb(Z0)2⋅s2=b(Z0)2⋅t2.
    \sup\limits_{0\leq s\leq t}\Bigg(\int_0^s b(Z_0)du\Bigg)^2=\sup\limits_{0\leq s\leq t}(b(Z_0)\cdot s)^2=\sup\limits_{0\leq s\leq t} b(Z_0)^2\cdot s^2= b(Z_0)^2\cdot t^2.


Consideremos ahora el proceso

M(s):=∫0sσ(Z0)dB(u).(4.7)
    M(s):=\int_0^s \sigma(Z_0)dB(u).
 \qquad(4.7)

Afirmamos que dicho proceso es una martingala, pues al ser Z0Z_0 constante esto implica que σ(Z0)\sigma(Z_0) no dependa de uu. Dado que Z0Z_0 es ℱ0-medible\mathcal{F}_0\text{-medible}, entonces σ(Z0)\sigma(Z_0) también lo es, más aún, es ℱu-medible\mathcal{F}_u\text{-medible} para toda u≥0u\geq 0. Por lo tanto el termino a integrar del proceso M(s)M(s), el cuál es una integral de Itô, es adaptado. Por hipotésis, de la condición (C2), podemos afirmar que

𝔼[|σ(Z0)|2]≤K2(1+𝔼[|Z0|2])≤∞.
        \mathbb{E}[|\sigma(Z_0)|^2] \leq K_2(1+\mathbb{E}[|Z_0|^2])\leq \infty.


Esto pues obteniendo el valor esperado de (Equation 4.3) , tomando a y=Z0y=Z_0 tenemos

𝔼[|σ(Z0)|2]≤𝔼[|b(Z0)|2+|σ(Z0)|2+∫|x|<c|F(Z0,x)|2ν(dx)]≤𝔼[K2(1+|Z0|2)]=K2𝔼[1+|Z0|2]=K2(1+𝔼[|Z0|2]).(4.8)
    \begin{aligned}
        \mathbb{E}[|\sigma(Z_0)|^2] & \leq \mathbb{E}\Bigg[|b(Z_0)|^2+|\sigma(Z_0)|^2+\int_{|x|<c} |F(Z_0,x)|^2 \nu(dx)\Bigg]\\ 
        & \leq \mathbb{E}[K_2(1+|Z_0|^2)]\\ 
        & = K_2\mathbb{E}[1+|Z_0|^2]\\ 
        & = K_2 (1+\mathbb{E}[|Z_0|^2]).
    \end{aligned}
 \qquad(4.8)

Por lo tanto, el proceso M(s)M(s) es una martingala. Así, usando la desigualdad maximal de Doob, tenemos que:

𝔼[sup0≤s≤t|M(s)|2]≤4𝔼[|M(t)|2].
    \mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t}|M(s)|^2\Bigg]\leq 4\mathbb{E}[|M(t)|^2].


De la isometría de Itô y por el teorema de Fubini

𝔼[sup0≤s≤t|M(s)|2]≤4𝔼[|M(t)|2]=4𝔼[∫0t|σ(Z0)|2ds]=4∫0t𝔼[|σ(Z0)|2]ds=4𝔼[|σ(Z0)|2]∫0tds=4t𝔼[|σ(Z0)|2].
    \begin{aligned}
        \mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t}|M(s)|^2\Bigg] & \leq 4\mathbb{E}[|M(t)|^2]\\ 
        & = 4 \mathbb{E}\Bigg[\int_0^t |\sigma(Z_0)|^2ds\Bigg]\\ 
        & = 4 \int_0^t \mathbb{E}[|\sigma(Z_0)|^2]ds\\ 
        & = 4 \mathbb{E}[|\sigma(Z_0)|^2]\int_0^t ds\\ 
        & = 4t \mathbb{E}[|\sigma(Z_0)|^2].
    \end{aligned}


De manera análoga, para el termino

W(s):=∫0s∫|x|<cF(Z0,x)Ñ(du,dx).
    W(s):= \int_0^s\int_{|x|<c}F(Z_0,x)\widetilde{N}(du,dx).


Podemos afirmar que es una martingala. Usando la isometría de Itô, desigualdad maximal de Doob y por el teorema de Fubini

𝔼[sup0≤s≤t|W(s)|2]≤4𝔼[|W(t)|2]=4∫0t∫|x|<c𝔼[|F(Z0,x)|2]ν(dx)ds=4t∫|x|<c𝔼[|F(Z0,x)|2]ν(dx).
    \begin{aligned}
        \mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t}|W(s)|^2\Bigg] & \leq 4\mathbb{E}[|W(t)|^2]\\ 
        & = 4\int_0^t\int_{|x|<c}\mathbb{E}[|F(Z_0,x)|^2]\nu(dx)ds\\ 
        & = 4t\int_{|x|<c}\mathbb{E}[|F(Z_0,x)|^2]\nu(dx).
    \end{aligned}


Así, de la igualdad (Equation 4.6) tenemos

𝔼[sup0≤s≤t|Z1(s)−Z0|2]≤3(𝔼[sup0≤s≤t(∫0sb(Z0)ds)2]+𝔼[sup0≤s≤t(∫0sσ(Z0)dB(s))2]+𝔼[sup0≤s≤t(∫0s∫|x|<cF(Z0,x)Ñ(ds,dx))2])≤3(t2𝔼[|b(Z0)|2]+4t𝔼[|σ(Z0)|2]+4t∫|x|<c𝔼[|F(Z0,x)|2]ν(dx))=3t2𝔼[|b(Z0)|2]+12t𝔼[|σ(Z0)|2]+12t∫|x|<c𝔼[|F(Z0,x)|2]ν(dx).(4.9)
    \begin{aligned}
        \mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t}|Z_1(s)-Z_0|^2\Bigg] 
        & \leq 3\Bigg( \mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t}\left(\int_0^s b(Z_0)\,ds\right)^2\Bigg]\\ 
            &\qquad
               + \mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t} \left(\int_0^s \sigma(Z_0)\,dB(s)\right)^2\Bigg]\\
        &\qquad\quad
            +\mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t} \left(\int_0^s\!\!\int_{|x|<c} F(Z_0,x)\,\widetilde{N}(ds,dx)\right)^2\Bigg]\Bigg)\\
        & \leq 3\Bigg(t^2\mathbb{E}[|b(Z_0)|^2]+4t\mathbb{E}[|\sigma(Z_0)|^2]\\ 
        & \qquad\quad + 4t\int_{|x|<c}\mathbb{E}[|F(Z_0,x)|^2]\nu(dx)\Bigg)\\ 
        & = 3t^2\mathbb{E}[|b(Z_0)|^2]+12t\mathbb{E}[|\sigma(Z_0)|^2]\\ 
        & \qquad\quad +12t\int_{|x|<c}\mathbb{E}[|F(Z_0,x)|^2]\nu(dx).
    \end{aligned}
 \qquad(4.9)

Notemos para los terminos en común 3t23t^2 y 12t12t podemos definir la variable C1(t):=max{3t,12}C_1(t):=\max{\{3t,12\}}, de aquí

3t2=3t⋅t≤max{3t,12}⋅t=C1(t)⋅t.12t=12⋅t≤max{3t,12}⋅t=C1(t)⋅t.
    \begin{aligned}
        3t^2 & = 3t\cdot t \leq \max{\{3t,12\}}\cdot t = C_1(t)\cdot t.\\ 
        12t & = 12\cdot t \leq \max{\{3t,12\}}\cdot t = C_1(t)\cdot t.
    \end{aligned}


Por lo tanto, (Equation 4.9) queda de la forma

𝔼[sup0≤s≤t|Z1(s)−Z0|2]≤3t2𝔼[|b(Z0)|2]+12t𝔼[|σ(Z0)|2]+12t∫|x|<c𝔼[|F(Z0,x)|2]ν(dx)≤C1(t)⋅t(𝔼[|b(Z0)|2]+𝔼[|σ(Z0)|2]+∫|x|<c𝔼[|F(Z0,x)|2]ν(dx)).(4.10)
    \begin{aligned}
        \mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t}|Z_1(s)-Z_0|^2\Bigg] 
        & \leq 3t^2\mathbb{E}[|b(Z_0)|^2]+12t\mathbb{E}[|\sigma(Z_0)|^2]\\ 
        & \qquad\quad +12t\int_{|x|<c}\mathbb{E}[|F(Z_0,x)|^2]\nu(dx)\\ 
        & \leq C_1(t)\cdot t\Bigg(\mathbb{E}[|b(Z_0)|^2]+\mathbb{E}[|\sigma(Z_0)|^2]\\ 
        & \qquad \qquad\quad+\int_{|x|<c}\mathbb{E}[|F(Z_0,x)|^2]\nu(dx)\Bigg).
    \end{aligned}
 \qquad(4.10)

Por hipotésis, los coeficientes bb, σ\sigma y FF cumplen con la condición (Equation 4.3), vale decir

|b(Z0)|2+|σ(Z0)|2+∫|x|<c|F(Z0,x)|ν(dx)≤K2(1+|Z0|2).
    |b(Z_0)|^2+|\sigma(Z_0)|^2+\int_{|x|<c}|F(Z_0,x)|\nu(dx)\leq K_2(1+|Z_0|^2).


De (Equation 4.8) podemos afirmar que 𝔼[K2(1+|Z0|2)]=K2(1+𝔼[|Z0|2])\mathbb{E}[K_2(1+|Z_0|^2)]=K_2(1+\mathbb{E}[|Z_0|^2]), tomando valor esperado de la ecuación anterior, tenemos

𝔼[|b(Z0)|2+|σ(Z0)|2+∫|x|<c|F(Z0,x)|ν(dx)]≤𝔼[K2(1+|Z0|2)].𝔼[|b(Z0)|2]+𝔼[|Z0|2]+𝔼[∫|x|<c|F(Z0,x)|2ν(dx)]≤K2(1+𝔼[|Z0|2]).𝔼[|b(Z0)|2]+𝔼[|Z0|2]+∫|x|<c𝔼[|F(Z0,x)|2]ν(dx)≤K2(1+𝔼[|Z0|2]).(4.11)
    \begin{aligned}
        \mathbb{E}\Bigg[|b(Z_0)|^2+|\sigma(Z_0)|^2+\int_{|x|<c}|F(Z_0,x)|\nu(dx)\Bigg] & \leq \mathbb{E}[K_2(1+|Z_0|^2)].\\
        \mathbb{E}[|b(Z_0)|^2]+\mathbb{E}[|Z_0|^2]+\mathbb{E}\Bigg[\int_{|x|<c}|F(Z_0,x)|^2\nu(dx)\Bigg] & \leq K_2(1+\mathbb{E}[|Z_0|^2]).\\ 
        \mathbb{E}[|b(Z_0)|^2]+\mathbb{E}[|Z_0|^2]+\int_{|x|<c}\mathbb{E}[|F(Z_0,x)|^2]\nu(dx)& \leq K_2(1+\mathbb{E}[|Z_0|^2]).    
    \end{aligned}
 \qquad(4.11)

Así de (Equation 4.10) y (Equation 4.11) tenemos que

𝔼[sup0≤s≤t|Z1(s)−Z0|2]≤C1(t)(𝔼[|b(Z0)|2]+𝔼[|σ(Z0)|2]+∫|x|<c𝔼[|F(Z0,x)|2]ν(dx))≤C1(t)⋅t⋅K2(1+𝔼[|Z0|2]).
    \begin{aligned}
        \mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t}|Z_1(s)-Z_0|^2\Bigg]
        & \leq C_1(t)\Bigg(\mathbb{E}[|b(Z_0)|^2]+\mathbb{E}[|\sigma(Z_0)|^2]\\ 
        & \qquad \qquad\quad+\int_{|x|<c}\mathbb{E}[|F(Z_0,x)|^2]\nu(dx)\Bigg)\\
        & \leq C_1(t)\cdot t\cdot K_2(1+\mathbb{E}[|Z_0|^2]).
    \end{aligned}


Peamos la diferencia para Zn+1Z_{n+1} y ZnZ_n, por la iteración de Picard, tenemos que

Zn=Z0+∫0tb(Zn−1(s−))ds+∫0tσ(Zn−1(s−))dB(s)+∫0t∫|x|<cF(Zn−1(s−),x)Ñ(ds,dx)Zn+1=Z0+∫0tb(Zn(s−))ds+∫0tσ(Zn(s−))dB(s)+∫0t∫|x|<cF(Zn(s−),x)Ñ(ds,dx).
    \begin{aligned}
        Z_n & = Z_0 + \int_0^t b(Z_{n-1}(s-))ds+\int_0^t \sigma(Z_{n-1}(s-))dB(s)\\ 
        &\qquad\quad + \int_0^t \int_{|x|<c} F(Z_{n-1}(s-),x)\widetilde{N}(ds,dx)\\ 
        Z_{n+1} & = Z_0 + \int_0^t b(Z_{n}(s-))ds+\int_0^t \sigma(Z_{n}(s-))dB(s)\\ 
        &\qquad\quad + \int_0^t \int_{|x|<c} F(Z_{n}(s-),x)\widetilde{N}(ds,dx).
    \end{aligned}


Consideremos la siguiente notación

Δb(n,s)=b(Zn(s−))−b(Zn−1(s−)).Δσ(n,s)=σ(Zn(s−))−σ(Zn−1(s−)).ΔF(n,s,x)=F(Zn(s−),x)−F(Zn−1(s−),x).
    \begin{aligned}
        \Delta b(n,s) & = b(Z_n(s-))-b(Z_{n-1}(s-)).\\ 
        \Delta \sigma(n,s) & = \sigma(Z_n(s-))-\sigma(Z_{n-1}(s-)).\\ 
        \Delta F(n,s,x) & = F(Z_n(s-),x)-F(Z_{n-1}(s-),x).
    \end{aligned}


Por lo tanto la diferencia Zn+1−ZnZ_{n+1}-Z_n está dada por

Zn+1(t)−Zn(t)=∫0tΔb(n,s)ds+∫0tΔσ(n,s)dB(s)+∫0t∫|x|<cΔF(n,s,x)Ñ(ds,dx).
    \begin{aligned}
        Z_{n+1}(t)-Z_n(t) & = \int_0^t \Delta b(n,s)ds + \int_0^t \Delta \sigma(n,s)dB(s)\\ 
        & \qquad \quad +\int_0^t\int_{|x|<c}\Delta F(n,s,x)\widetilde{N}(ds,dx).
    \end{aligned}


Elevando al cuadrado, considerando valor absoluto y usando la desigualdad (Equation 4.5), tenemos que

|Zn+1(t)−Zn(t)|2=(∫0tΔb(n,s)ds+∫0tΔσ(n,s)dB(s)+∫0t∫|x|<cΔF(n,s,x)Ñ(ds,dx))2≤3((∫0tΔb(n,s)ds)2+(∫0tΔσ(n,s)ds)2+(∫0t∫|x|<cΔF(n,s,c)Ñ(ds,dx))2).(4.12)
    \begin{aligned}
        |Z_{n+1}(t)-Z_n(t)|^2 & = \Bigg( \int_0^t \Delta b(n,s)ds + \int_0^t \Delta \sigma(n,s)dB(s)\\ 
        &\qquad\quad +\int_0^t\int_{|x|<c}\Delta F(n,s,x)\widetilde{N}(ds,dx)\Bigg)^2\\ 
        & \leq 3\Bigg(\Bigg(\int_0^t \Delta b(n,s)ds\Bigg)^2+\Bigg(\int_0^t  \Delta \sigma(n,s)ds\Bigg)^2\\ 
        &\qquad\quad +\Bigg(\int_0^t\int_{|x|<c}\Delta F(n,s,c)\widetilde{N}(ds,dx)\Bigg)^2\Bigg).
    \end{aligned}
 \qquad(4.12)

Nuevamente, definimos la siguiente notación

A:=𝔼[sup0≤s≤t(∫0sΔb(n,u)du)2]B:=𝔼[sup0≤s≤t(∫0sΔσ(n,u)dB(u))2]C:=𝔼[sup0≤s≤t(∫0sΔF(n,u,x)Ñ(du,dx))2]
    \begin{aligned}
        A & := \mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t}\Bigg(\int_0^s \Delta b(n,u)du\Bigg)^2\Bigg]\\ 
        B & := \mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t}\Bigg(\int_0^s \Delta \sigma(n,u)dB(u)\Bigg)^2\Bigg]\\ 
        C & := \mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t}\Bigg(\int_0^s \Delta F(n,u,x)\widetilde{N}(du,dx)\Bigg)^2\Bigg]
    \end{aligned}


Por tanto de la (Equation 4.12), tomando supremo en el intervalo [0,t][0,t] y aplicando valor esperado, la expresión se reduce a la forma

𝔼[sup0≤s≤t|Zn+1(s)−Zn(s)|2]≤3(A+B+C).(4.13)
    \mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t} |Z_{n+1}(s)-Z_n(s)|^2\Bigg]\leq 3(A+B+C).
 \qquad(4.13)

Trabajaremos con cada termino de la desigualdad para poder acotar 𝔼[sup0≤s≤t|Zn+1(t)−Zn(t)|2]\displaystyle \mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t} |Z_{n+1}(t)-Z_n(t)|^2\Bigg]. Notemos que para AA el termino del supremo es una integral de Lebesgue, por lo que usando la Desigualdad de Cauchy-Schwarz podemos afirmar que

(∫0sΔb(n,u)du)2≤s∫0s|Δb(n,u)|2du,∀s∈[0,t].  
    \Bigg(\int_0^s \Delta b(n,u)du\Bigg)^2\leq s \int_0^s |\Delta b(n,u)|^2du,\ \ \forall s\in [0,t].


Dado que s≤ts\leq t, esto implica que

s∫0s|Δb(n,u)|2du≤t∫0t|Δb(n,u)|2du.
    s \int_0^s |\Delta b(n,u)|^2du\leq t\int_0^t |\Delta b(n,u)|^2du.


Dado que el supremo preserva desigualdades, tenemos

sup0≤s≤t(∫0sΔb(n,u)du)2≤sup0≤s≤t(s∫0s|Δb(n,u)|2du)≤sup0≤s≤t(t∫0t|Δb(n,u)|2du)=t∫0t|Δb(n,u)|2du.
    \begin{aligned}
            \sup\limits_{0\leq s\leq t} \Bigg(\int_0^s \Delta b(n,u)du\Bigg)^2 & \leq \sup\limits_{0\leq s\leq t}\Bigg(s \int_0^s |\Delta b(n,u)|^2du\Bigg)\\ 
            & \leq \sup\limits_{0\leq s\leq t}\Bigg(t\int_0^t |\Delta b(n,u)|^2du\Bigg)\\ 
            & = t\int_0^t |\Delta b(n,u)|^2du.
    \end{aligned}


Tomando el valor esperado

A=𝔼[sup0≤s≤t(∫0sΔb(n,u)du)2]≤𝔼[t∫0t|Δb(n,u)|2du]=t∫0t𝔼[|Δb(n,u)|2]du.
    \begin{aligned}
        A & = \mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t}\Bigg(\int_0^s \Delta b(n,u)du\Bigg)^2\Bigg]\\ 
        & \leq \mathbb{E}\Bigg[t\int_0^t |\Delta b(n,u)|^2du\Bigg]\\ 
        & = t\int_0^t \mathbb{E}[|\Delta b(n,u)|^2]du.
    \end{aligned}


Definimos al proceso H(s)H(s) de la forma

H(s):=∫0sΔσ(n,u)dB(u).
    H(s) := \int_0^s \Delta \sigma(n,u)dB(u).


Afirmamos que dicho proceso es una martingala bajo los argumentos para el proceso M(s)M(s) en (Equation 4.7). Haciendo uso de la desigualdad maximal de Doob

𝔼[sup0≤s≤t|H(s)|2]≤4𝔼[|H(t)|2].
    \mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t}|H(s)|^2\Bigg]\leq 4\mathbb{E}[|H(t)|^2].


Usando la isometría de Itô

𝔼[|H(s)|2]=𝔼[∫0t|Δσ(n,u)|2du].
    \mathbb{E}[|H(s)|^2]=\mathbb{E}\Bigg[\int_0^t |\Delta \sigma(n,u)|^2 du\Bigg].


Esto implica que

B=𝔼[sup0≤s≤t(|H(s)|2)]≤4𝔼[|H(t)|2]=4𝔼[∫0t|Δσ(n,u)|2du]=4∫0t𝔼[|Δσ(n,u)|2]du.
    \begin{aligned}
        B & = \mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t}\left(|H(s)|^2\right)\Bigg]\\ 
        & \leq 4\mathbb{E}[|H(t)|^2]\\ 
        & = 4 \mathbb{E}\Bigg[\int_0^t |\Delta \sigma(n,u)|^2du\Bigg]\\ 
        & = 4 \int_0^t \mathbb{E}[|\Delta \sigma(n,u)|^2]du.
    \end{aligned}


Definimos el proceso

L(s):=∫0s∫|x|<cΔF(n,u,x)Ñ(du,dx).
    L(s) := \int_0^s\int_{|x|<c} \Delta F(n,u,x)\widetilde{N}(du,dx).


Afirmamos que dicho proceso es una martingala. Aplicando la desigualdad de Doob, obtenemos

𝔼[sup0≤s≤t|L(s)|2]≤4𝔼[|L(t)|2].
    \mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t} |L(s)|^2\Bigg]\leq 4\mathbb{E}\left[|L(t)|^2\right].


Por la isometría de Itô en la medida de Poisson, tenemos

𝔼[|L(t)|2]=𝔼[∫0t(∫|x|<c|ΔF(n,u,x)|2ν(dx))du]=∫0t∫|x|<c𝔼[|ΔF(n,u,x)|2]ν(dx)du.
    \begin{aligned}
        \mathbb{E}\left[|L(t)|^2\right] & = \mathbb{E}\Bigg[\int_0^t\Bigg(\int_{|x|<c}|\Delta F(n,u,x)|^2\nu(dx)\Bigg)du\Bigg]\\ 
        & = \int_0^t\int_{|x|<c}\mathbb{E}\left[|\Delta F(n,u,x)|^2\right]\nu(dx)du.
    \end{aligned}


Por lo tanto

C=𝔼[sup0≤s≤t|∫0s∫|x|<cΔF(n,u,x)Ñ(du,dx)|2]≤4∫0t∫|x|<c𝔼[|ΔF(n,u,x)|2]ν(dx)du.
    \begin{aligned}
        C & = \mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t}\left|\int_0^s\int_{|x|<c}\Delta F(n,u,x)\widetilde{N}(du,dx)\right|^2\Bigg]\\ 
        & \leq 4 \int_0^t\int_{|x|<c}\mathbb{E}\left[|\Delta F(n,u,x)|^2\right]\nu(dx)du.
    \end{aligned}


Así de (Equation 4.13)

𝔼[sup0≤s≤t|Zn+1(s−)−Zn(s−)|2]≤3(A+B+C)≤3(t∫0t𝔼[|Δb(n,u)|2]du+4∫0t𝔼[|Δσ(n,u)|2]du)+4∫0t∫|x|<c𝔼[|ΔF(n,u,x)|2]ν(dx)du=3t∫0t𝔼[|Δb(n,u)|2]du+12∫0t𝔼[|Δσ(n,u)|2]du+12∫0t∫|x|<c𝔼[|ΔF(n,u,x)|2]ν(dx)du.
    \begin{aligned}
        \mathbb{E}\left[\sup\limits_{0\leq s\leq t} \left|Z_{n+1}(s-)-Z_n(s-)\right|^2\right] & \leq 3(A+B+C)\\ 
        & \leq 3\Bigg(t\int_0^t \mathbb{E}\left[|\Delta b(n,u)|^2\right]du\\ 
        & \qquad + 4\int_0^t \mathbb{E}\left[|\Delta \sigma(n,u)|^2\right]du\Bigg)\\ 
        &  \qquad\quad + 4\int_0^t\int_{|x|<c}\mathbb{E}\left[|\Delta F(n,u,x)|^2\right]\nu(dx)du\\ 
        & = 3t\int_0^t \mathbb{E}\left[|\Delta b(n,u)|^2\right]du\\ 
        & \qquad + 12\int_0^t \mathbb{E}\left[|\Delta \sigma(n,u)|^2\right]du\\ 
        &  \qquad\quad + 12\int_0^t\int_{|x|<c}\mathbb{E}\left[|\Delta F(n,u,x)|^2\right]\nu(dx)du.
    \end{aligned}


Recordemos que C1(t)=max{3t,12}C_1(t)=\max\{3t,12\}, por lo tanto, 3t≤C1(t)3t\leq C_1(t) y 12≤C1(t)12\leq C_1(t), así

𝔼[sup0≤s≤t|Zn+1(s−)−Zn(s−)|2]≤3t∫0t𝔼[|Δb(n,u)|2]du+12∫0t𝔼[|Δσ(n,u)|2]du+12∫0t∫|x|<c𝔼[|ΔF(n,u,x)|2]ν(dx)du≤C1(t)∫0t𝔼[|Δb(n,u)|2]du+C1(t)∫0t𝔼[|Δσ(n,u)|2]du+C1(t)∫0t∫|x|<c𝔼[|ΔF(n,u,x)|2]ν(dx)du=C1(t)∫0t(𝔼[|Δb(n,u)|2]+𝔼[|Δσ(n,u)|2]+∫|x|<c𝔼[|ΔF(n,u,x)|2]ν(dx))du.
    \begin{aligned}
        \mathbb{E}\left[\sup\limits_{0\leq s\leq t} \left|Z_{n+1}(s-)-Z_n(s-)\right|^2\right] & \leq 3t\int_0^t \mathbb{E}\left[|\Delta b(n,u)|^2\right]du\\ 
        & \qquad + 12\int_0^t \mathbb{E}\left[|\Delta \sigma(n,u)|^2\right]du\\ 
        &  \qquad\quad + 12\int_0^t\int_{|x|<c}\mathbb{E}\left[|\Delta F(n,u,x)|^2\right]\nu(dx)du\\
        & \leq C_1(t)\int_0^t \mathbb{E}\left[|\Delta b(n,u)|^2\right]du\\ 
        & \qquad + C_1(t)\int_0^t \mathbb{E}\left[|\Delta \sigma(n,u)|^2\right]du\\ 
        &  \qquad\quad + C_1(t)\int_0^t\int_{|x|<c}\mathbb{E}\left[|\Delta F(n,u,x)|^2\right]\nu(dx)du\\
        & = C_1(t)\int_0^t\Bigg(\mathbb{E}\left[|\Delta b(n,u)|^2\right]+\mathbb{E}\left[|\Delta \sigma(n,u)|^2\right]\\ 
        & \qquad + \int_{|x|<c}\mathbb{E}\left[|\Delta F(n,u,x)|^2\right]\nu(dx)\Bigg)du.
    \end{aligned}


Recordemos que si f:[0,t]f:[0,t] es una función, entonces para todo v∈[0,t]v\in [0,t] se cumple que

|f(v)|≤sup0≤u≤t|f(u)|.
    |f(v)|\leq \sup\limits_{0\leq u\leq t}|f(u)|.


Así, tenemos que

|Zn(u−)−Zn−1(u−)|2≤sup0≤v≤u|Zn(v)−Zn−1(v)|2.
    |Z_n(u-)-Z_{n-1}(u-)|^2\leq \sup\limits_{0\leq v\leq u}|Z_n(v)-Z_{n-1}(v)|^2.


Tomando valor esperado, el cual, preserva la desigualdad, además, multiplicando por K1>0K_1>0, obtenemos

K1𝔼[|Zn(u−)−Zn−1(u−)|2]≤K1𝔼[sup0≤v≤u|Zn(v)−Zn−1(v)|2].(4.14)
    K_1\mathbb{E}\left[|Z_n(u-)-Z_{n-1}(u-)|^2\right] \leq K_1\mathbb{E}\left[\sup\limits_{0\leq v\leq u}|Z_n(v)-Z_{n-1}(v)|^2\right].
 \qquad(4.14)

Por la hipotesis (Equation 4.2) la cuál indica que los coeficientes bb, σ\sigma y FF satisfacen

|b(y1)−b(y2)|2+|σ(y1)−σ(y2)|2+∫|x|<c|F(y1,x)−F(y2,x)|2ν(dx)≤K1|y1−y2|2.
    \begin{aligned}
    |b(y_1) - b(y_2)|^2 & + |\sigma(y_1) - \sigma(y_2)|^2\\ 
    & + \int_{|x| < c} |F(y_1, x) - F(y_2, x)|^2 \, \nu(dx) \\
    &\qquad \quad \leq K_1 |y_1 - y_2|^2.
    \end{aligned}


Aplicando esto para y1=Zn(u−)y_1=Z_n(u-) y y2=Zn−1(u−)y_2=Z_{n-1}(u-), además tomando valor esperado, tenemos

𝔼[|b(Zn(u−))−b(Zn−1(u−))|2]+𝔼[|σ(Zn(u−))−σ(Zn−1(u−))|2]+𝔼[∫|x<c||F(Zn(u−),x)−F(Zn−1(u−),x)|2ν(dx)]≤K1𝔼[|Zn(u−)−Zn−1(u−)|2]≤K1𝔼[sup0≤v≤u|Zn(v)−Zn−1(v)|2].
    \begin{aligned}
        \mathbb{E}\left[|b(Z_n(u-))-b(Z_{n-1}(u-))|^2\right] & + \mathbb{E}\left[|\sigma(Z_n(u-))-\sigma(Z_{n-1}(u-))|^2\right]\\ 
        & \quad + \mathbb{E}\left[\int_{|x<c|}|F(Z_n(u-),x)-F(Z_{n-1}(u-),x)|^2\nu(dx)\right]\\ 
        & \qquad\quad \leq K_1 \mathbb{E}\left[|Z_n(u-)-Z_{n-1}(u-)|^2\right]\\ 
        & \qquad\quad \leq K_1\mathbb{E}\left[\sup\limits_{0\leq v\leq u}|Z_n(v)-Z_{n-1}(v)|^2\right].
    \end{aligned}


Multiplicando por la variable C1(t)C_1(t) e intregrando en el intervalo [0,t][0,t] con respecto a uu tenemos que

𝔼[sup0≤s≤t|Zn+1(s)−Zn(s)|2]=C1(t)∫0t(𝔼[|b(Zn(u−))−b(Zn−1(u−))|2]+𝔼[|σ(Zn(u−))−σ(Zn−1(u−))|2]+𝔼[∫|x|<c|F(Zn(u−),x)−F(Zn−1(u−),x)|2ν(dx)])du≤C1(t)K1∫0t𝔼[sup0≤v≤u|Zn(u)−Zn−1(u)|2]du.
    \begin{aligned}
        \mathbb{E}\left[\sup\limits_{0\leq s\leq t}|Z_{n+1}(s)-Z_n(s)|^2\right] & = C_1(t)\int_0^t \Bigg(\mathbb{E}\left[|b(Z_n(u-))-b(Z_{n-1}(u-))|^2\right]\\ 
        & \qquad\qquad\quad + \mathbb{E}\left[|\sigma(Z_n(u-))-\sigma(Z_{n-1}(u-))|^2\right]\\ 
        & \qquad\qquad\quad + \mathbb{E}\left[\int_{|x|<c}|F(Z_n(u-),x)-F(Z_{n-1}(u-),x)|^2\nu(dx)\right]\Bigg)du\\ 
        & \leq C_1(t) K_1\int_0^t \mathbb{E}\left[\sup\limits_{0\leq v\leq u}|Z_n(u)-Z_{n-1}(u)|^2\right]du.
    \end{aligned}


Ahora bien, para n≥1n\geq 1 y t≥0t\geq 0 definimos el siguiente proceso

dn(t):=𝔼[sup0≤s≤t|Zn(s)−Zn−1(s)|2].
    d_n(t):= \mathbb{E}\left[\sup\limits_{0\leq s\leq t}|Z_n(s)-Z_{n-1}(s)|^2\right].


Hemos demostrado hasta ahora las siguientes desigualdades

d1(t)=𝔼[sup0≤s≤t|Z1(s)−Z0|2]≤C1(t)K2(1+𝔼[|Z0|2]).(4.15)
    d_1(t) = \mathbb{E}\left[\sup\limits_{0\leq s\leq t}|Z_1(s)-Z_0|^2\right]\leq C_1(t)K_2(1+\mathbb{E}[|Z_0|^2]).
 \qquad(4.15)

dn+1(t)=𝔼[sup0≤s≤t|Zn+1(s)−Zn(s)|2]≤C1(t)K1∫0tdn(s)ds.(4.16)
    d_{n+1}(t) = \mathbb{E}\left[\sup\limits_{0\leq s\leq t}|Z_{n+1}(s)-Z_n(s)|^2\right]\leq C_1(t)K_1\int_0^t d_n(s)ds.
 \qquad(4.16)

Definimos las variables C2(t):=tC1(t)C_2(t):=tC_1(t) y K3:=max{K1,K2(1+𝔼[|Z0|2])}.K_3:=\max\{K_1,K_2(1+\mathbb{E}[|Z_0|^2])\}.

Afirmamos que para toda n∈ℕn\in \mathbb{N}, se cumple

dn(t)≤C2(t)nK3nn!.(4.17)
    d_n(t)\leq \frac{C_2(t)^n K_3^n}{n!}.
 \qquad(4.17)

Procediendo por inducción, veamos que se cumple para n=1n=1. Esto es claro, dado que K2(1+𝔼[|Z0|2])≤max{K1,K2(1+𝔼[|Z0|2])}=K3K_2(1+\mathbb{E}[|Z_0|^2])\leq \max\{K_1,K_2(1+\mathbb{E}[|Z_0|^2])\}=K_3, por lo tanto

d1(t)≤C1(t)tK2(1+𝔼[|Z0|2])≤C2(t)K3=C2(t)1K311!.
    d_1(t)\leq C_1(t)tK_2(1+\mathbb{E}[|Z_0|^2])\leq C_2(t)K_3 = \frac{C_2(t)^1 K_3^1}{1!}.


Suponemos ahora la afirmación es cierta para n=kn=k, es decir

dk(t)≤C2(t)kK3kk!.
    d_k(t)\leq \frac{C_2(t)^k K_3^k}{k!}.


Veamos ahora que se cumple para n=k+1n=k+1, vale decir, queremos probar que

dk+1(t)≤C2(t)k+1K3k+1(k+1)!.
    d_{k+1}(t)\leq \frac{C_2(t)^{k+1} K_3^{k+1}}{(k+1)!}.


Por la (Equation 4.16) tenemos

dk+1≤C1(t)K1∫0tdk(s)ds.
        d_{k+1} \leq C_1(t)K_1\int_0^t d_k(s)ds.


Usando la Hipotesis de inducción, podemos afirmar que

dk+1(t)≤C1(t)K1∫0tdk(s)ds≤C1(t)K1∫0tC2(t)kK3kk!.
    d_{k+1}(t) \leq C_1(t)K_1\int_0^t d_k(s)ds\leq C_1(t)K_1\int_0^t \frac{C_2(t)^kK_3^k}{k!}.


Aquí debemos considerar los siguientes casos

Caso 1: t<1t<1

Dado que 0≤s≤t<10\leq s\leq t<1, entonces 3s≤3t<3<123s\leq 3t<3<12, por lo tanto

C1(s)=max{3s,12}=12=max{3t,12}=C1(t).
    C_1(s)=\max\{3s,12\}=12=\max\{3t,12\}=C_1(t).


Caso 2: t≥1t\geq 1

Es claro que si s≤ts\leq t, entonces 3s≤3t3s\leq 3t, por tanto, podemos afimar

C1(s)=max{3s,12}≤max{3t,12}=C1(t).
    C_1(s)=\max\{3s,12\}\leq \max\{3t,12\}=C_1(t).


En ambos casos note que se cumple C1(s)≤C1(t)C_1(s)\leq C_1(t), más aún es claro que K1≤K3K_1\leq K_3, esto implica que K1K3k≤K3k+1K_1K_3^k\leq K_3^{k+1} por lo tanto

dk+1(t)≤C1(t)K1∫0tdk(s)ds≤C1(t)K1∫0tC2(t)kK3kk!ds.=C1(t)K1K3kk!∫0tskC1(s)kds≤C1(t)K3k+1k!∫0tskC1(s)kds≤C1(t)K3k+1k!∫0tskC1(t)kds=C1(t)C1(t)kK3k+1k!∫0tskds=C1(t)k+1K3k+1k!tk+1k+1=tk+1C1(t)k+1K3k+1(k+1)!=C2(t)k+1K3k+1(k+1)!.
    \begin{aligned}
        d_{k+1}(t) & \leq C_1(t)K_1\int_0^t d_k(s)ds\\ 
        & \leq C_1(t)K_1\int_0^t \frac{C_2(t)^k K_3^k}{k!}ds.\\ 
        & = \frac{C_1(t)K_1 K_3^k}{k!}\int_0^t s^kC_1(s)^k ds\\ 
        & \leq \frac{C_1(t)K_3^{k+1}}{k!}\int_0^t s^k C_1(s)^k ds\\
        & \leq \frac{C_1(t)K_3^{k+1}}{k!}\int_0^t s^k C_1(t)^k ds\\ 
        & = \frac{C_1(t)C_1(t)^k K_3^{k+1}}{k!}\int_0^t s^k ds\\ 
        & = \frac{C_1(t)^{k+1}K_3^{k+1}}{k!}\frac{t^{k+1}}{k+1}\\ 
        & = \frac{t^{k+1}C_1(t)^{k+1}K_3^{k+1}}{(k+1)!}\\ 
        & = \frac{C_2(t)^{k+1}K_3^{k+1}}{(k+1)!}.
    \end{aligned}


Por lo tanto para toda n∈ℕn\in \mathbb{N} se cumple

dn(t)≤C2kK3nn!.
d_{n}(t)\leq \frac{C_2^k K_3^n}{n!}.


Veamos que la sucesión {Zn(t)}n∈ℕ\{Z_n(t)\}_{n\in \mathbb{N}} es una sucesión de Cauchy en L2L^2 usando la norma ∥⋅∥2:=[𝔼(|⋅|2)]1/2\|\cdot\|_2:=[\mathbb{E}(|\cdot|^2)]^{1/2} el cuál hace de L2L^2 un espacio completo.

Sean m,nℕm,n\mathbb{N}, sin perdida de generalidad, supongamos que m<nm<n, aplicando la desigualdad del triangulo, podemos afirmmar que para cada 0≤s≤t0\leq s\leq t se cumple

∥Zn(s)−Zm(s)∥2=∥∑r=m+1n(Zr(s)−Zr−1(s))∥2≤∑r=m+1n∥Zr(s)−Zr−1(s)∥2.
    \begin{aligned}
        \|Z_n(s)-Z_m(s)\|_2 & = \Bigg\|\sum\limits_{r=m+1}^n (Z_r(s)-Z_{r-1}(s))\Bigg\|_2\\ 
        & \leq \sum\limits_{r=m+1}^n\|Z_r(s)-Z_{r-1}(s)\|_2.
    \end{aligned}


De la (Equation 4.17) sabemos que para cada r=m+1,m+2,…,nr=m+1,m+2,\ldots,n se cumple

𝔼[sup0≤s≤t|Zr(s)−Zr−1(s)|2]≤C2(t)rK3rr!.
    \mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t}|Z_r(s)-Z_{r-1}(s)|^2\Bigg]\leq \frac{C_2(t)^rK_3^r}{r!}.


Dado que son terminos no negativos, tomando raíz se puede afirmar que

∥Zr(s)−Zr−1(s)∥2≤𝔼[sup0≤u≤t|Zr(s)−Zr−1(s)|2]≤C2(t)r/2K3r/2(r!)r/2.
    \begin{aligned}
        \|Z_r(s)-Z_{r-1}(s)\|_2 & \leq \sqrt{\mathbb{E}\Bigg[\sup\limits_{0\leq u\leq t}|Z_r(s)-Z_{r-1}(s)|^2\Bigg]}\\ 
        & \leq \frac{C_2(t)^{r/2}K_3^{r/2}}{(r!)^{r/2}}.
    \end{aligned}


Por tanto para cada 0≤s≤t0\leq s\leq t tenemos

∥Zn(s)−Zm(s)∥2≤∑r=m+1n∥Zr(s)−Zr−1(s)∥2≤∑r=m+1nC2(t)r/2K3r/2(r!)r/2.
    \begin{aligned}
        \|Z_n(s)-Z_m(s)\|_2 & \leq \sum\limits_{r=m+1}^n \|Z_r(s)-Z_{r-1}(s)\|_2\\ 
        & \leq \sum\limits_{r=m+1}^n \frac{C_2(t)^{r/2}K_3^{r/2}}{(r!)^{r/2}}.
    \end{aligned}


Definimos la siguiente variable

A′:=C2(t)K3>0.
    A':=C_2(t)K_3>0.


Reescribiendo el termino de la suma de la siguiente forma

ar=Ar/2(r!)1/2=(Arr!)1/2.(4.18)
    a_r=\frac{A^{r/2}}{(r!)^{1/2}}=\Bigg(\frac{A^r}{r!}\Bigg)^{1/2}.
 \qquad(4.18)

Veamos la convergencía de la serie

∑r=1∞ar=∑r=1∞(Arr!)1/2.
\sum\limits_{r=1}^{\infty} a_r=\sum\limits_{r=1}^{\infty} \Bigg(\frac{A^r}{r!}\Bigg)^{1/2}.


Considerando el cociente del término ara_r tenemos

ar+1ar=(Ar+1(r+1)!)1/2(Arr!)1/2=(Ar+1(r+1)!⋅r!Ar)1/2=(Ar+1)1/2.
    \begin{aligned}
        \frac{a_{r+1}}{a_r} & = \frac{\Bigg(\frac{A^{r+1}}{(r+1)!}\Bigg)^{1/2}}{\Bigg(\frac{A^r}{r!}\Bigg)^{1/2}}\\ 
        & = \Bigg(\frac{A^{r+1}}{(r+1)!}\cdot \frac{r!}{A^r}\Bigg)^{1/2}\\ 
        & = \Bigg(\frac{A}{r+1}\Bigg)^{1/2}.
    \end{aligned}


Ahora tomando el límite cuando r→∞r\rightarrow\infty

limr→∞ar+1ar=limr→∞Ar+1=0.
\lim\limits_{r\rightarrow\infty}\frac{a_{r+1}}{a_r}=\lim\limits_{r\rightarrow\infty}\sqrt{\frac{A}{r+1}}=0.


Dado que este límite es estrictamente menor que 1, por el criterio de la razón, podemos afirmar que la serie converge absolutamente esto implica que la serie converge, más aún, su cola converge, es decir, para todo ε>0\varepsilon>0 existe N∈ℕN\in \mathbb{N} tal que

∑r=N+1∞C2(t)r/2K3r/2(r!)r/2<ε.
    \sum\limits_{r=N+1}^{\infty}\frac{C_2(t)^{r/2}K_3^{r/2}}{(r!)^r/2}<\varepsilon.


Entonces, para todo n,m≥Nn,m\geq N tales que m<nm<n y todo s∈[0,t]s\in [0,t]

∥Zn(s)−Zm(s)∥2≤∑r=m+1nC2(t)r/2K3r/2(r!)r/2≤∑r=N+1∞C2(t)r/2K3r/2(r!)r/2<ε.
    \|Z_n(s)-Z_m(s)\|_2\leq \sum\limits_{r=m+1}^n\frac{C_2(t)^{r/2}K_3^{r/2}}{(r!)^{r/2}}\leq \sum\limits_{r=N+1}^{\infty} \frac{C_2(t)^{r/2}K_3^{r/2}}{(r!)^{r/2}}<\varepsilon.


Por lo tanto, podemos afirmar que (Zn(s))(Z_n(s)) es una sucesión de Cauchy en L2L^2.

Al ser L2(Ω,ℱ,ℙ)L^2(\Omega, \mathcal{F},\mathbb{P}) un espacio de Banach, vale decir, es un espacio completo con la norma ∥⋅∥2\|\cdot\|_2, entonces toda sucesión de Cauchy converge en L2L^2. Luego existe Z(s)∈L2Z(s)\in L^2 tal que

limm→∞∥Zm(s)−Z(s)∥2=0,∀s∈[0,t].(4.19)
    \lim\limits_{m\rightarrow \infty}\|Z_m(s)-Z(s)\|_2=0, \ \ \ \forall s\in [0,t].
 \qquad(4.19)

Cómo m<nm<n, por la desigualdad del triángulo, afirmamos que

∥Z(s)−Zn(s)∥2≤∥Z(s)−Zm(s)∥2+∥Zm(s)−Zn(s)∥2.
    \|Z(s)-Z_n(s)\|_2\leq \|Z(s)-Z_m(s)\|_2+\|Z_m(s)-Z_n(s)\|_2.


Tomando límite cuando m→∞m\rightarrow\infty en ambos lados; por la Equation 4.19 tenemos que

limm→∞∥Zm(s)−Z(s)∥2=0.
    \lim\limits_{m\rightarrow \infty}\|Z_m(s)-Z(s)\|_2=0.


Luego, dado que ya se demostró que la seríe dada por Equation 4.18 converge entonces

limm→∞∥Zm(s)−Zn(s)∥2≤limm→∞∑r=n+1mC2(t)r/2K3r/2(r!)r/2=∑r=n+1∞C2(t)r/2K3r/2(r!)r/2.
    \lim\limits_{m\rightarrow\infty} \|Z_m(s)-Z_n(s)\|_2\leq \lim\limits_{m\rightarrow\infty}\sum\limits_{r=n+1}^m\frac{C_2(t)^{r/2}K_3^{r/2}}{(r!)^{r/2}}=\sum\limits_{r=n+1}^{\infty}\frac{C_2(t)^{r/2}K_3^{r/2}}{(r!)^{r/2}}.


Además el termino ∥Z(s)−Zn(s)∥2\|Z(s)-Z_n(s)\|_2 no depende de mm, por lo tanto

∥Z(s)−Zn(s)∥2≤∑r=n+1∞C2(t)r/2K3r/2(r!)r/2.
    \|Z(s)-Z_n(s)\|_2\leq \sum\limits_{r=n+1}^{\infty}\frac{C_2(t)^{r/2}K_3^{r/2}}{(r!)^{r/2}}.


Consideremos ahora la siguiente notación

Xn:=sup0≤s≤t|Zn(s)−Zn−1(s)|.
    X_n:=\sup\limits_{0\leq s\leq t} |Z_n(s)-Z_{n-1}(s)|. 


Queremos encontrar una cota para

ℙ(Xn≥12n).
    \mathbb{P}\Bigg(X_n\geq\frac{1}{2^n}\Bigg).


Aplicando a Xn2X_n^2 Chebyshev-Markov tenemos que

ℙ(Xn≥12n)=ℙ(Xn2≥14n)≤4n𝔼[Xn2].(4.20)
    \mathbb{P}\Bigg(X_n\geq\frac{1}{2^n}\Bigg)=\mathbb{P}\Bigg(X_n^2\geq \frac{1}{4^n}\Bigg)\leq 4^n\mathbb{E}[X_n^2].
 \qquad(4.20)

Notemos que 𝔼[Xn2]\mathbb{E}[X_n^2] ya esta acotado dado por la Equation 4.17, así

𝔼[Xn2]=𝔼[sup0≤s≤t|Zn(s)−Zn−1(s)|2]≤C2(t)nK3nn!.
    \mathbb{E}[X_n^2]=\mathbb{E}\Bigg[\sup\limits_{0\leq s\leq t}|Z_n(s)-Z_{n-1}(s)|^2\Bigg]\leq \frac{C_2(t)^nK_3^n}{n!}.


De la Equation 4.20, esto implica que

ℙ(Xn≥12n)≤4nC2(t)2K3nn!=(4C2(t)K3)nn!.
    \mathbb{P}\Bigg(X_n\geq\frac{1}{2^n}\Bigg)\leq 4^n\frac{C_2(t)^2K_3^n}{n!}=\frac{(4C_2(t)K_3)^n}{n!}.


Más aún, sabemos que la seríe C2(t)nK3nn!\displaystyle \frac{C_2(t)^nK_3^n}{n!}, esto implica que (4C2(t)K3)nn!\displaystyle \frac{(4C_2(t)K_3)^n}{n!} también coverge, por lo tanto

∑n=1∞ℙ(sup0≤s≤t|Zn(s)−Zn−1(s)|≥12n)≤∑n=1∞(4C2(t)K3)nn!<∞.
    \sum\limits_{n=1}^{\infty} \mathbb{P}\Bigg(\sup\limits_{0\leq s\leq t}|Z_n(s)-Z_{n-1}(s)|\geq \frac{1}{2^n}\Bigg)\leq \sum\limits_{n=1}^{\infty} \frac{(4C_2(t)K_3)^n}{n!}<\infty.


De aquí es posible usar el Lema de Borell-Cantelli, es decir, podemos afirmar

ℙ(limsupn→∞{sup0≤s≤t|Zn(s)−Zn−1(s)|≥12n})=0.
    \mathbb{P}\Bigg(\limsup\limits_{n\rightarrow \infty}\Bigg\{\sup\limits_{0\leq s\leq t}|Z_n(s)-Z_{n-1}(s)|\geq \frac{1}{2^n}\Bigg\}\Bigg)=0.


La estimación obtenida nos dice que la probabilidad de que las diferencias consecutivas |Zn(s)−Zn−1(s)||Z_n(s) - Z_{n-1}(s)| sean “grandes” (mayores que 1/2n1/2^n) se vuelve extremadamente pequeña a medida que nn crece, tan pequeña que la suma de todas esas probabilidades es finita.

En otras palabras, casi todas las trayectorias de la sucesión (Zn)(Z_n) se vuelven uniformemente estables, a partir de algún momento, los términos de la sucesión ya no cambian mucho entre sí, ni en ningún instante del intervalo [0,t][0,t].

Esto garantiza que, con probabilidad 1, la sucesión (Zn(⋅))(Z_n(\cdot)) converge uniformemente en [0,t][0,t] a una función límite Z(⋅)Z(\cdot). Es decir, no solo converge punto a punto, sino que lo hace de manera controlada en todo el intervalo al mismo tiempo.

Veamos ahora que dicha solución es única, así supongamos que Z(1)=(Z(1)(t))t≥0Z^{(1)}= (Z^{(1)}(t))_{t \geq 0} y Z(2)=(Z(2)(t))t≥0Z^{(2)} = (Z^{(2)}(t))_{t \geq 0} son dos soluciones fuertes de la SDE modificada, es decir, procesos adaptados, càdlàg, cuadrado-integrables y que satisfacen, para todo t≥0t \geq 0, las ecuaciones integrales:

Z(i)(t)=Z0+∫0tb(Z(i)(s−))ds+∫0tσ(Z(i)(s−))dB(s)+∫0t∫|x|<cF(Z(i)(s−),x)Ñ(ds,dx),
    \begin{aligned}
        Z^{(i)}(t) & = Z_0 + \int_0^t b(Z^{(i)}(s-))\,ds\\ 
        & \qquad \quad + \int_0^t \sigma(Z^{(i)}(s-))\,dB(s)\\ 
        & \qquad\quad + \int_0^t \int_{|x|<c} F(Z^{(i)}(s-), x)\,\tilde{N}(ds,dx),
    \end{aligned}


para i=1,2i=1,2, casi seguramente. Queremos ver que Z(1)(t)=Z(2)(t)Z^{(1)}(t) = Z^{(2)}(t) para todo t≥0t\geq 0 con probabilidad 11. Restando las dos ecuaciones de Z(1)Z^{(1)} y Z(2)Z^{(2)} tenemos que

Z(1)(t)−Z(2)(t)=∫0t[b(Z(1)(s−))−b(Z(2)(s−))]ds+∫0t[σ(Z(1)(s−))−σ(Z(2)(s−))]dB(s)+∫0t∫|x|<c[F(Z(1)(s−),x)−F(Z(2)(s−),x)]Ñ(ds,dx).(4.21)
    \begin{aligned}
        Z^{(1)}(t) - Z^{(2)}(t) & = \int_0^t [b(Z^{(1)}(s-)) - b(Z^{(2)}(s-))]\,ds\\ 
        & \qquad + \int_0^t [\sigma(Z^{(1)}(s-)) - \sigma(Z^{(2)}(s-))]\,dB(s)\\ 
        & \qquad\quad + \int_0^t \int_{|x|<c} [F(Z^{(1)}(s-), x) - F(Z^{(2)}(s-), x)]\,\tilde{N}(ds,dx). 
    \end{aligned}
 \qquad(4.21)

Definimos la siguiente notación

Δb(s):=b(Z(1)(s−))−b(Z(2)(s−))Δσ(s):=σ(Z(1)(s−))−σ(Z(2)(s−))ΔF(s,x):=F(Z(1)(s−),x)−F(Z(2)(s−),x)
    \begin{aligned}
        \Delta b(s) & :=b(Z^{(1)}(s-))-b(Z^{(2)}(s-))\\ 
        \Delta \sigma(s) & := \sigma(Z^{(1)}(s-))-\sigma(Z^{(2)}(s-))\\ 
        \Delta F(s,x) & := F(Z^{(1)}(s-),x)-F(Z^{(2)}(s-),x)
    \end{aligned}


Nuestro objetivo ahora es estimar 𝔼[sup0≤s≤t|Z(1)(t)−Z(2)(t)|2]\displaystyle \mathbb{E}\left[\sup\limits_{0\leq s\leq t}|Z^{(1)}(t) - Z^{(2)}(t)|^2\right]. Para ello, similar al procedimiento anterior, elevando al cuadrado la Equation 4.21, tomando supremo y despues esperanza en el intervalo [0,t][0,t] tenemos la siguiente desigualdad

𝔼[sup0≤s≤t|Z(1)(s)−Z(2)(s)|2]≤3(𝔼[sup0≤s≤t|∫0s[Δb(s)]du|2]+𝔼[sup0≤s≤t|∫0s[σ(s)]dB(u)|2]+𝔼[sup0≤s≤t|∫0s∫|x|<c[ΔF(u,x)]Ñ(du,dx)|2]).
    \begin{aligned}
        \mathbb{E}\left[\sup\limits_{0\leq s\leq t}|Z^{(1)}(s) - Z^{(2)}(s)|^2\right] \leq & 3\Bigg(\mathbb{E}\left[\sup\limits_{0\leq s\leq t}\Bigg|\int_0^s [\Delta b(s)]du\Bigg|^2\right]\\ 
        &\quad + \mathbb{E}\left[\sup\limits_{0\leq s\leq t}\Bigg|\int_0^s [\sigma(s)]dB(u)\Bigg|^2\right]\\ 
        & \qquad + \mathbb{E}\left[\sup\limits_{0\leq s\leq t}\Bigg|\int_0^s\int_{|x|<c} [\Delta F(u,x)]\widetilde{N}(du,dx)\Bigg|^2\right]\Bigg).
    \end{aligned}


Aplicando la desigualdad de Cauchy–Schwarz para integrales, para el primer termino de la desigualdad tenemos

|∫0sΔb(u)du|2≤s∫0s|Δb(u)|2du≤t∫0t|Δb(u)|2du.
    \begin{aligned}
        \Bigg|\int_0^s \Delta b(u)du\Bigg|^2 & \leq s\int_0^s |\Delta b(u)|^2du\\ 
        & \leq t\int_0^t |\Delta b(u)|^2du.
    \end{aligned}


Dado que s≤ts\leq t al tomar supremo y valor esperado obtenemos la cota

𝔼[supo≤s≤t|∫0sΔb(u)du|2]≤t∫0t𝔼[|Δb(u)|2]du.
\mathbb{E}\left[\sup\limits_{o\leq s\leq t}\Bigg|\int_0^s \Delta b(u)du\Bigg|^2\right]\leq t\int_0^t \mathbb{E}[|\Delta b(u)|^2]du.


Bajo argumentos similares utilizados anteriormente, afirmamos que el proceso

∫0sΔσ(u)dB(u),
    \int_0^s \Delta \sigma (u)\ dB(u), 


es una martingala local continua, por tanto, usando la desigualdad maximal de Doob tenemos

𝔼[sup0≤s≤t|∫0sΔσ(u)dB(u)|2]≤4𝔼[|∫0tΔσ(s)dB(s)|2].
    \mathbb{E}\left[\sup\limits_{0\leq s\leq t}\left|\int_0^s \Delta \sigma (u)dB(u)\right|^2\right]\leq 4\mathbb{E}\left[\Bigg|\int_0^t \Delta \sigma (s)\ dB(s)\Bigg|^2\right].


De aquí, usando la isometría de Itô

𝔼[|∫0tΔσ(s)dB(s)|2]≤𝔼[∫0t|Δσ(s)|2ds].
\mathbb{E}\left[\Bigg|\int_0^t \Delta \sigma (s) dB(s)\Bigg|^2\right] \leq \mathbb{E}\Bigg[\int_0^t |\Delta \sigma (s)|^2ds\Bigg].


Esto implica que

𝔼[∫0t|Δσ(s)|2ds]=∫0t𝔼[|Δσ(s)|2ds].
    \mathbb{E}\Bigg[\int_0^t |\Delta \sigma (s)|^2ds\Bigg] = \int_0^t \mathbb{E}[|\Delta \sigma (s)|^2ds].


Por lo tanto

𝔼[sup0≤s≤t|∫0sΔσ(u)dB(u)|2]≤4∫0t𝔼[|Δσ(s)|2ds].
    \mathbb{E}\left[\sup\limits_{0\leq s\leq t}\left|\int_0^s \Delta \sigma (u)\ dB(u)\right|^2\right]\leq 4\int_0^t \mathbb{E}[|\Delta \sigma (s)|^2ds].


Podemos afirmar ahora que el siguiente proceso es una martingala local càdlàg

∫0s∫|x|<cΔF(u,x)Ñ(du,dx).
    \int_0^s\int_{|x|<c} \Delta F(u,x)\widetilde{N}(du,dx).


Nuevamente aplicando la desigualdad maximal de Doob la isometría de Itô para integrales respecto a Ñ\widetilde{N} tenemos que

𝔼[sup0≤s≤t|∫0s∫|x|<cΔF(u,x)Ñ(du,dx)|2]≤4∫0t∫|x|<c𝔼[|ΔF(s,x)|2]ν(dx)ds.
    \mathbb{E}\left[\sup\limits_{0\leq s\leq t}\left|\int_0^s\int_{|x|<c} \Delta F(u,x)\widetilde{N}(du,dx)\right|^2\right]\leq 4\int_0^t\int_{|x|<c}\mathbb{E}[|\Delta F(s,x)|^2]\nu(dx)ds.


Por lo tanto

𝔼[sup0≤s≤t|Z(1)(s)−Z(2)(s)|2]≤3t∫0t𝔼[|Δb(s)|2]ds+12∫0t𝔼[|Δσ(s,x)|2ds]+12∫0t∫|x|<c𝔼[|ΔF(s,x)|2]ν(dx)ds.
    \begin{aligned}
        \mathbb{E}\left[\sup\limits_{0\leq s\leq t}\left|Z^{(1)}(s) - Z^{(2)}(s)\right|^2\right]\leq & 3t\int_0^t \mathbb{E}[|\Delta b(s)|^2]ds\\ 
        & \quad + 12 \int_0^t \mathbb{E}[|\Delta \sigma(s,x)|^2ds]\\ 
        & \qquad +12 \int_0^t\int_{|x|<c}\mathbb{E}[|\Delta F(s,x)|^2]\nu(dx)ds.
    \end{aligned}


Usando y factorizando la variable ya definida C1(t)C_1(t) tenemos que

𝔼[sup0≤s≤t|Z(1)(s)−Z(2)(s)|2]≤C1(t)∫0t(𝔼[|Δb(s)|2]+𝔼[|Δσ(s)|2]+∫|x|<c𝔼[|ΔF(s,x)|2]ν(dx))ds.
    \begin{aligned}
        \mathbb{E}\left[\sup\limits_{0\leq s\leq t}\left|Z^{(1)}(s) - Z^{(2)}(s)\right|^2\right]\leq & C_1(t)\int_0^t\Bigg(\mathbb{E}[|\Delta b(s)|^2]+\mathbb{E}[|\Delta \sigma(s)|^2]\\
        & \qquad\qquad +\int_{|x|<c}\mathbb{E}[|\Delta F(s,x)|^2]\nu(dx)\Bigg)ds.
    \end{aligned}


De manera similar como ya se hizo en el análisis de la diferencia entre ZnZ_n y Zn−1Z_{n-1} en la iteración de Picard, haciendo uso de la condición (Equation 4.2) podemos obtener

𝔼[sup0≤s≤t|Z(1)(s)−Z(2)(s)|2]≤C1(t)K1∫0t𝔼[sup0≤u≤s|Z(1)(u)−Z(2)(u)|2]ds.
    \mathbb{E}\left[\sup\limits_{0\leq s\leq t}\left|Z^{(1)}(s) - Z^{(2)}(s)\right|^2\right]\leq C_1(t)K_1\int_0^t\mathbb{E}\left[\sup\limits_{0\leq u\leq s}|Z^{(1)}(u) - Z^{(2)}(u)|^2\right]ds.


De esta forma definimos ahora la función

D(t):=𝔼[sup0≤s≤t|Z(1)(s)−Z(2)(s)|2].
    D(t):=\mathbb{E}\left[\sup\limits_{0\leq s\leq t}\left|Z^{(1)}(s) - Z^{(2)}(s)\right|^2\right].


Es claro que D(t)≥0D(t)\geq 0 para toda t≥0t\geq 0. Fijando a T≥0T\geq 0, podemos afirmar que para todo t∈[0,T]t\in [0,T] la variable C1(t)≤C1(T)<∞C_1(t)\leq C_1(T)<\infty. Por el Teorema de Gronwall tenemos que

D(t)≤0⋅eC1(T)K1=0,t∈[0,T].
    D(t) \leq 0\cdot e^{C_1(T)K_1}=0, \qquad t\in [0,T].


Por la arbitrariedad de TT, tenemos que para todo t≥0t\geq 0 se cumple

D(t)=𝔼[sup0≤s≤t|Z(1)(s)−Z(2)(s)|2]=0.
    D(t)=\mathbb{E}\left[\sup\limits_{0\leq s\leq t}\left|Z^{(1)}(s) - Z^{(2)}(s)\right|^2\right]=0.


Por lo tanto, por propiedad de la esperanza podemos afirmar que

sup0≤s≤t|Z(1)(s)−Z(2)(s)|2=0c.s.
\sup\limits_{0\leq s\leq t}\left|Z^{(1)}(s) - Z^{(2)}(s)\right|^2=0\ \ \text{c.s.}


Es decir, Z(1)(s)=Z(2)(s)Z^{(1)}(s)=Z^{(2)}(s) para toda s∈[0,t]s\in [0,t], c.sc.s. Definimos

An:={ω:Z(1)(s,ω)=Z(2)(s,ω)para todos∈[0,n]}.
A_n:=\left\{\omega: Z^{(1)}(s,\omega)=Z^{(2)}(s,\omega)\ \text{para todo} s\in [0,n]\right\}.


Sabemos que ℙ(An)=1\mathbb{P}(A_n)=1 para toda n∈ℕn\in \mathbb{N} y también

A=⋂n=1∞An={ω:Z(1)(t,ω)=Z(2)(t,ω) para todo t≥0}.
    A = \bigcap_{n=1}^\infty A_n = \left\{ \omega : Z^{(1)}(t,\omega) = Z^{(2)}(t,\omega) \text{ para todo } t \geq 0 \right\}.


Por la continuidad de la probabilidad (propiedad de medidas):

ℙ(A)=ℙ(⋂n=1∞An)=1.
\mathbb{P}(A) = \mathbb{P}\left( \bigcap_{n=1}^\infty A_n \right) = 1.


Veamos el caso cuando 𝔼[|Z0|2]=∞\mathbb{E}[|Z_0|^2]=\infty. En teoria de probabilidad, al truncar una variable aleatoria podemos cortarla cuando esta está fuera de un rango finito, reemplazando sus valores extremos por cero o por el valor de dicho borde. Vamos aproximar Z0Z_0 por una sucesión de variables acotadas, para más adelante garantizar la existencia y unicidad de una solución a la Equation 4.1. Definimos el truncamiento de la variable aleatoria Z0Z_0 de la forma

Z0(n):=Z0⋅1{|Z0|≤n},
    Z_0^{(n)}:=Z_0\cdot 1_{\{|Z_0|\leq n\}},


Donde

1{|Z0|≤n}(ω)={1,si |Z0(ω)|≤n,0,si |Z0(ω)|>n.
1_{\{ |Z_0| \leq n \}}(\omega) =
\begin{cases}
1, & \text{si } |Z_0(\omega)| \leq n, \\
0, & \text{si } |Z_0(\omega)| > n.
\end{cases}


Esto implica que

Z0(n)(ω)={Z0(ω),si |Z0(ω)|≤n,0,si |Z0(ω)|>n.
    Z_0^{(n)}(\omega) = 
    \begin{cases}
    Z_0(\omega), & \text{si } |Z_0(\omega)| \leq n, \\ 
    0, & \text{si } |Z_0(\omega)| > n.
    \end{cases}


Esto garantiza que 𝔼[|Z0(n)|2]≤n2<∞\mathbb{E}[|Z_0^{(n)}|^2]\leq n^2<\infty, por otro lado, cómo Z0Z_0 es 𝓕\mathbfcal{F}- medible y 1{|Z0|≤n}1_{\{|Z_0|\leq n\}} también lo es, entonces Z0(n)Z_0^{(n)} es ℱ\mathcal{F}-medible.

Fijemos ω∈Ω\omega\in \Omega tal que |Z0(ω)|<∞|Z_0(\omega)|<\infty, por tanto, existe N∈ℕN\in \mathbb{N} tal que |Z0(ω)|≤N|Z_0(\omega)|\leq N, de aquí, para todo n≥Nn\geq N, se tiene |Z0(ω)|≤n|Z_0(\omega)|\leq n, más aún, Z0(n)(ω)=Z0(ω)\displaystyle Z_0^{(n)}(\omega)=Z_0(\omega). Esto implica que, para casi todo ω∈Ω\omega\in\Omega, la sucesión (Z0(n)(ω))(Z_0^{(n)}(\omega)) es constante e igual a Z0(ω)Z_0(\omega). Así, por definición de convergencia puntual, tenemos

limn→∞Z0(n)(ω)=Z0(ω), para casi todo ω.
\lim\limits_{n\rightarrow\infty}Z_0^{(n)}(\omega)=Z_0(\omega), \text{ para casi todo $\omega$}.


Por lo tanto

Z0(n)→n→∞c.s.Z0,
Z_0^{(n)} \xrightarrow[n \to \infty]{\text{c.s.}} Z_0,


entonces para cada n∈ℕn\in \mathbb{N} la variable Z0(n)Z_0^{(n)} es ℱ0\mathcal{F}_0-medible y acotada. Lo que nos permite afirmar que pertenece a L2(Ω,ℱ0,ℙ)L^2(\Omega,\mathcal{F}_0,\mathbb{P}). En consecuencia, es posible aplicar los argumentos anteriores, cuando 𝔼[|Z0|2]<∞\mathbb{E}[|Z_0|^2]<\infty, para afirmar que existe una única solución fuerte de la Equation 4.1, digamos Z(n)Z^{(n)}, con condición inicial Z0(n)Z_0^{(n)}.

Para cada N∈ℕN\in \mathbb{N}, definimos el conjunto

ΩN:={ω∈Ω:|Z0(ω)|≤N}.
    \Omega_N:=\{\omega\in \Omega:|Z_0(\omega)|\leq N\}.


Esto implica, para cualquier m>n≥Nm>n\geq N, se tiene

Z0(m)(ω)=Z0(ω)=Z0(n) para todo ω∈ΩN.(4.22)
    Z_0^{(m)}(\omega)=Z_0(\omega)=Z_0^{(n)} \text{   para todo $\omega\in \Omega_N$}.
 \qquad(4.22)

Es deicr, en ΩN\Omega_N, las condiciones iniciales de Z(m)Z^{(m)} y Z(n)Z^{(n)} son iguales. Por lo tanto, para todo t≥0t\geq 0 se cumple que

Z(m)(t)=Z(n)(t)c.s.
    Z^{(m)}(t)=Z^{(n)}(t)\ \text{c.s.}


Queremos ver ahora que la sucesión {Zn}n∈ℕ\{Z^{n}\}_{n\in \mathbb{N}} es uniformemente de Cauchy en probabilidad, es decir, dado ε>0\varepsilon>0 y δ>0\delta>0, existe N∈ℕN\in \mathbb{N} tal que para todo m,n≥Nm,n\geq N, se cumple

ℙ(supt≥0|Z(n)(t)−Z(m)(t)|>δ)<ε.
    \mathbb{P}\Bigg(\sup\limits_{t\geq 0}|Z^{(n)}(t)-Z^{(m)}(t)|>\delta\Bigg)<\varepsilon.


Notemos que de los conjuntos anteriormente definidos, cumplen que ΩN⊂ΩN+1\Omega_N\subset \Omega_{N+1}. Por otro lado, al ser Z0Z_0 una variable aleatoria real, entonces ℙ(|Z0|<∞)=1\mathbb{P}(|Z_0|<\infty)=1 . Así al ser ΩN\Omega_N una sucesión de conjuntos crecientes, se tiene

⋃n=1∞Ωn={|Z0|<∞}.
    \bigcup\limits_{n=1}^{\infty}\Omega_n=\{|Z_0|<\infty\}.


Por la continuidad de la probabilidad, podemos afirmar limn→∞ℙ(Ωn)=1\displaystyle \lim\limits_{n\rightarrow \infty}\mathbb{P}(\Omega_n)=1. Esto implica que para cualquier ε>0\varepsilon>0, existe N∈ℕN\in \mathbb{N} tal que

ℙ(ΩN)>1−ε.(4.23)
    \mathbb{P}(\Omega_N)>1-\varepsilon.
 \qquad(4.23)

De Equation 4.22 sabemos que

supt≥0|Z(n)(t)−Z(m)(t)|=0en ΩN
\sup\limits_{t\geq 0}|Z^{(n)}(t)-Z^{(m)}(t)|=0\ \ \text{en $\Omega_N$}


Por lo tanto, si la diferencia es distinta de cero, es decir, para δ>0\delta>0, solo puede ocurrir fuera de ΩN\Omega_N, esto es, ocurre en el complemento de ΩN\Omega_N. Entonces

{ω:supt≥0|Z(n)(t)−Z(m)(t)|>δ}⊂ΩNc.
\Bigg\{\omega:\sup\limits_{t\geq 0}|Z^{(n)}(t)-Z^{(m)}(t)|>\delta\Bigg\}\subset \Omega_N^{c}.


Por propiedad básica de la probabilidad, podemos afirmar

ℙ(supt≥0|Z(n)(t)−Z(m)(t)|>δ)≤ℙ(ΩNc).
\mathbb{P}\Bigg(\sup\limits_{t\geq 0}|Z^{(n)}(t)-Z^{(m)}(t)|>\delta\Bigg)\leq\mathbb{P}(\Omega_N^c).


Más aún, notemos que ℙ(ΩNc)=1−ℙ(ΩN)\mathbb{P}(\Omega_N^c)=1-\mathbb{P}(\Omega_N), por la Equation 4.23, entonces ℙ(ΩNc)<ε\mathbb{P}(\Omega_N^c)<\varepsilon. De la ecuación anterior, podemos afirmar ℙ(supt≥0|Z(n)(t)−Z(m)(t)|>δ)<ε,∀m,n≥N
    \mathbb{P}\Bigg(\sup\limits_{t\geq 0}|Z^{(n)}(t)-Z^{(m)}(t)|>\delta\Bigg)<\varepsilon, \ \ \forall\ m,n\geq N


Por lo tanto, la sucesión (Z(n))n∈ℕ(Z^{(n)})_{n\in \mathbb{N}} es uniformemente de Cauchy en probabilidad. Al estar en L2L^2 podemos afirmar que existe un proceso Z={Z(t)}t≥0Z=\{Z(t)\}_{t\geq 0} de tal forma que

supt≥0|Z(n)(t)−Z(t)|→n→∞ℙ0.
    \sup\limits_{t\geq 0}|Z^{(n)}(t)-Z(t)| \xrightarrow[n \to \infty]{\mathbb{P}} 0.


Por el teorema de convergencia de sucesiones de Cauchy en probabilidad, para la sucesión es posible extraer una subsucesión {Znk}\{Z_{n_k}\} tal que se cumple

supt≥0|Z(nk)(t)−Z(t)|→k→∞c.s.0.
    \sup\limits_{t\geq 0}|Z^{(n_k)}(t)-Z(t)| \xrightarrow[k \to \infty]{\text{c.s.}} 0.


De aquí, notemos que por construcción, cada Z(nk)Z^{(n_k)} posee trayectorias càdlàg, y la convergencia es uniforme casi segura, entonces el límite ZZ admite una versión càdlàg. Por otro lado, dado que cada Z(nk)Z^{(n_k)} es adaptado y su convergencia al proceso ZZ es uniforme, basta notar que la adaptabilidad de un proceso se converva bajo convergencia puntual, en nuestro caso, convergencia uniforme casi seguramente, por tanto podemos afirmar que el límite ZZ es adaptado.

Analicemos ahora la unicidad de dicha solución. Procediendo por contradicción, supongamos que existe otra solución fuerte Z′=(Z′(t))t≥0Z'=(Z'(t))_{t\geq 0} con la misma condición inicial Z0Z_0. Fijando a N∈ℕN\in \mathbb{N}, consideremos al conjunto ΩN\Omega_N, ya sabemos que en este conjunto la condición incial es acotada y además por el caso 𝔼[|Z0|2]<∞\mathbb{E}[|Z_0|^2]<\infty la solución es única. Por lo tanto

Z′(t)(ω)=ZM(t)(ω)para todo t≥0,∀ω∈ΩNc.s.
    Z'(t)(\omega) = Z_M(t)(\omega)\ \ \ \  \text{para todo }t\geq 0,\ \ \ \ \ \forall\omega\in \Omega_N\ \text{c.s.}


para cualquier M≥NM\geq N, donde ZMZ_M es la solución con condición inicial truncada Z(M)=Z0Z^{(M)}=Z_0 en ΩN\Omega_N. Asumamos que esto falla para algún M≥NM\geq N, es decir, existe un conjunto A⊂ΩNA\subset \Omega_N con ℙ(A)>0\mathbb{P}(A)>0 tal que Z′(t)(ω)≠ZM(t)(ω)Z'(t)(\omega)\neq Z_M(t)(\omega) con ω∈A.\omega\in A. Podemos definir un nuevo proceso, llamemos a este Z″MZ''_M, mediante

Z″M(t)(ω)={Z′(t)(ω),ω∈A,ZM(t)(ω)ω∉A.
Z''_M(t)(\omega) =
\begin{cases}
Z'(t)(\omega), & \omega\in A, \\
Z_M(t)(\omega) & \omega\notin A.
\end{cases}    


Dado que A⊂ΩNA\subset \Omega_N, entonces A∈ℱ0A\in \mathcal{F}_0, podemos afirmar que Z″Z'' es adaptado, pues Z′Z' y Z(M)Z^{(M)} son dos procesos adaptados en un conjunto ℱ0\mathcal{F}_0-medible. Luego, al ser Z″Z'' la combinación de dos funciones càdlàg entonces Z″Z'' es càdlàg.

Notemos que si ω∈A⊂ΩN⊂ΩM\omega\in A\subset \Omega_N\subset \Omega_M, entonces

Z″M(0)(ω)=Z′(0)(ω)=Z0(ω)=Z0(M)(ω),
    Z''_M(0)(\omega)=Z'(0)(\omega)=Z_0(\omega)=Z_0^{(M)}(\omega),


por otro lado, si ω∉A\omega\notin A, esto implica que

Z″M(0)(ω)=Z(M)(0)(ω)=Z0(ω),
    Z''_M(0)(\omega)=Z^{(M)}(0)(\omega)=Z_0(\omega),


en ambos casos se tiene que Z″M(0)=Z(M)(0)Z''_M(0)=Z^{(M)}(0) con ω∈A\omega\in A casi seguramente.

Entonces Z″MZ''_M y Z(M)Z^{(M)} son dos soluciones de la Equation 4.1 con la misma condición inicial, por construcción, en el conjunto AA, se tiene que Z″M(t)≠Z(M)(t)Z''_M(t)\neq Z^{(M)}(t) para algún tt. Lo cual es una contradicción al caso cuando 𝔼[|Z0|2]<∞\mathbb{E}[|Z_0|^2]<\infty donde se establece la unicidad casi segura de la solución fuerte.

Dado que al suponer ℙ(A)>0\mathbb{P}(A)>0 nos lleva a una contradicción, podemos afirmar que ℙ(A)=0\mathbb{P}(A)=0, es decir, Z′(t)=Z(M)(t)Z'(t)=Z^{(M)}(t) para todo t≥0t\geq 0, casi seguramente en ΩN\Omega_N. Esto vale para todo N∈ℕN\in \mathbb{N}, como

ℙ(⋃N=1∞ΩN)=1,
    \mathbb{P}\Bigg(\bigcup\limits_{N=1}^{\infty}\Omega_N\Bigg)=1,


podemos concluir

ℙ(Z′(t)=Z(t)para todo t≥0)=1.
    \mathbb{P}(Z'(t)=Z(t)\ \text{para todo }\ t\geq 0)=1.


Por lo tanto, la solución fuerte es única casi seguramente






5 Estabilidad media cuadrática


Consideremos la ecuación diferencial estocástica con saltos

dX(t)=aX(t−)dt+bX(t−)dW(t)+cX(t−)dN(t),t≥0,(5.1)
    dX(t)=aX(t-)dt+bX(t-)dW(t)+cX(t-)dN(t),\qquad t\geq 0,
 \qquad(5.1)

con condición inicial X(0)=X0X(0)=X_0, donde a,b,c∈ℝa,b,c\in \mathbb{R} son constantes, W(t)W(t) es un movimiento browniano estándar y N(t)N(t) es un proceso de Poisson con intensidad λ>0\lambda >0, definido sobre un espacio de probabilidad filtrado (Ω,ℱ,{ℱt}t≥0,ℙ)(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P}).

Nuestro objetivo es presentar el proceso de deducción de la solución explícita de la Equation 5.1. La herramienta que usaremos para el análisis de la ecuación diferencial estocástica con saltos será el lema de Itô para procesos de difusión con saltos. Con esto, consideremos un proceso estocástico {Yn}n≥0\{Y_n\}_{n\geq 0} de la forma

dY(t)=μ(t)dt+σ(t)dW(t)+γ(t)dN(t),
    dY(t)=\mu(t)dt+\sigma(t)dW(t)+\gamma(t)dN(t),


donde μ(t),σ(t),γ(t)\mu(t), \sigma(t), \gamma(t) son procesos adaptados, W(t)W(t) es un movimiento browniano y N(t)N(t) es un proceso de Poisson. Para una función f∈C2{ℝ+×ℝ+}f\in C^2\{\mathbb{R}^{+}\times\mathbb{R}^{+}\} el diferencial estocástico de f(t,Y(t))f(t,Y(t)) está dado por

df(t,Y(t))=∂f∂t(t,Y(t−))dt+∂f∂y(t,Y(t−))[μ(t)dt+σ(t)dW(t)]+12∂2f∂y2(t,Y(t−))σ(t)2dt+[f(t,Y(t−)+γ(t))−f(t,Y(t−))]dN(t).
    \begin{aligned}
        df(t,Y(t)) & = \frac{\partial f}{\partial t}(t,Y(t-))dt \\ 
        & \qquad +\frac{\partial f}{\partial y}(t,Y(t-))[\mu(t)dt+\sigma(t)dW(t)]\\ 
        & \qquad + \frac{1}{2}\frac{\partial^2 f}{\partial y^2}(t,Y(t-))\sigma(t)^2dt\\ 
        & \qquad +[f(t,Y(t-)+\gamma(t))-f(t,Y(t-))]dN(t).
    \end{aligned}


Notemos que el último término representa el cambio finito en ff cuando ocurre unn salto de tamaño γ(t)\gamma(t) en YY.

Para nuestro caso, para facilitar el tratamiento de los saltos, vamos a introducir el proceso de Poisson compensado definido por

Ñ(t):=N(t)−λt,t≥0.
    \widetilde{N}(t):=N(t)-\lambda t,\qquad t\geq 0.


Sabemos que este preceso es una martingala con esperanza 𝔼[Ñ(t)]=0\mathbb{E}[\widetilde{N}(t)]=0, varianza 𝔼[|Ñ(t)|2]=λt\mathbb{E}[|\widetilde{N}(t)|^2]=\lambda t, además los incrementos en dicho proceso son independientes.




Theorem 5.1 Consideremos la ecuación diferencial estocástica lineal con saltos

dX(t)=aX(t−)dt+bX(t−)dW(t)+cX(t−)dN(t),t≥0,(5.2)
    dX(t)=aX(t-)dt+bX(t-)dW(t)+cX(t-)dN(t), \ \ \ t\geq 0,
 \qquad(5.2)

donde a,b,c∈ℝa,b,c\in \mathbb{R} son constantes, W(t)W(t) es un movimiento browiniano y N(t)N(t) es un proceso de Poisson con intensidad λ>0\lambda>0. Definimos el siguiente parámetro de estabilidad

l:=2a+b2+λc(2+c),
    l:= 2a+b^2+\lambda c(2+c),


y se sabe que la solución análitica es estable en media cuadrática, es decir

limt→∞𝔼[|X(t)|2]=0,
    \lim\limits_{t\rightarrow\infty} \mathbb{E}[|X(t)|^2]=0,


si y solo si l<0l<0.

Sea Δt>0\Delta t>0 un tamaño de paso fijo y θ∈[0,1]\theta\in [0,1] el paramétro del método theta compensado estocástico (CSTM). Al aplicar dicho método a Equation 5.2, si 12≤θ≤1\displaystyle \frac{1}{2}\leq \theta\leq 1, entonces el método es estable en media cuadrática, es decir, para todo Δt>0\Delta t>0 se cumple que las aproximaciones numéricas heredan la estabilidad de la solución análitica siempre que l<0l<0.

Si 0≤θ<12\displaystyle 0\leq \theta<\frac{1}{2}, el método es estable en media cuadrática si y solo si el tamaño del paso satisface

Δt<−l(1−2θ)(a+λc)2.
    \Delta t<\frac{-l}{(1-2\theta)(a+\lambda c)^2}.





Proof. Cómo primer paso, comenzaremos aplicando el método theta compensado estocástico a la Equation 5.2, con condición inicial X(0)=X0X(0)=X_0. Para aplicar dicho método (CSTM) definimos el proceso de Poisson compensado de la forma Ñ(t):=N(t)−λt\widetilde{N}(t):=N(t)-\lambda t, el cuál es una martingala y satiisface 𝔼[Ñ(t)]=0\mathbb{E}[\widetilde{N}(t)]=0 y 𝔼[|Ñ(t)|2]=λt\mathbb{E}[|\widetilde{N}(t)|^2]=\lambda t. Por lo tanto, esto nos permite reescribir la Equation 5.2 de la forma equivalente

dX(t)=aX(t−)dt+bX(t−)dW(t)+cX(t−)dN(t)=aX(t−)dt+bX(t−)dW(t)+cX(t−)d(Ñ(t)+λt)=aX(t−)dt+bX(t−)dW(t)+cX(t−)dÑ(t)+λcX(t−)dt=(a+λc)X(t)dt+bX(t−)dW(t)+cX(t−)dÑ(t).(5.3)
\begin{aligned}
    dX(t) & = aX(t-)dt+bX(t-)dW(t)+cX(t-)dN(t)\\ 
    & = aX(t-)dt+bX(t-)dW(t)+cX(t-)d(\widetilde{N}(t)+\lambda t)\\ 
    & = aX(t-)dt+bX(t-)dW(t)+cX(t-)d\widetilde{N}(t)+ \lambda cX(t-)dt\\ 
    & = (a+\lambda c)X(t)dt +bX(t-)dW(t)+cX(t-)d\widetilde{N}(t).
\end{aligned}
 \qquad(5.3)

Para un tamaño de paso constante Δt>0\Delta t>0, definimos la malla tn=nΔtt_n=n\Delta t con n∈ℕn\in \mathbb{N}. El método (CSTM) aplicado a la Equation 5.3 genera un sucesión de aproximaciones Yn≈X(tn)Y_n\approx X(t_n) mediante la ecuación de diferencias implícita dada por

Yn+1=Yn+(1−θ)Δt(a+λc)Yn+θΔt(a+λc)Yn+1+bYnΔWn+cYnΔÑn,(5.4)
    \begin{aligned}
        Y_{n+1}= & Y_n+(1-\theta)\Delta t(a+\lambda c)Y_n \\ 
        & \qquad +\theta \Delta t(a+\lambda c)Y_{n+1}+bY_n\Delta W_n+cY_n\Delta \widetilde{N}_n,
    \end{aligned}
 \qquad(5.4)

donde θ∈[0,1]\theta\in [0,1] es un parámetro del método, los incrementos estocásticos se definen de la forma

ΔWn:=W(tn+1)−W(tn)ΔÑn:=Ñ(tn+1)−Ñ(tn).
    \begin{aligned}
        \Delta W_n : & = W(t_{n+1})-W(t_n) \\ 
        \Delta \widetilde{N}_n : & = \widetilde{N}(t_{n+1})-\widetilde{N}(t_n). 
    \end{aligned}


Notemos que, dichos incrementos son independientes entre sí, además satifacen que 𝔼[ΔWn]=𝔼[ΔÑn]=0\mathbb{E}[\Delta W_n]=\mathbb{E}[\Delta\widetilde{N}_n]=0, 𝔼[|ΔWn|2]=Δt\mathbb{E}[|\Delta W_n|^2]=\Delta t y 𝔼[|ΔÑn|2]=λΔt\mathbb{E}[|\Delta \widetilde{N}_n|^2]=\lambda \Delta t.

Reorganizando la Equation 5.4 de tal forma que podamos expresar de forma explícita el término Yn+1Y_{n+1} en términos de YnY_n, obtenemos

Yn+1−θΔt(a+λc)Yn+1=Yn+(1−θ)Δt(a+λc)Yn+bYnΔWn+cYnΔÑn.
    \begin{aligned}
        Y_{n+1}-\theta \Delta t(a+\lambda c)Y_{n+1} & = Y_n +(1-\theta)\Delta t(a+\lambda c)Y_n\\ 
        & \qquad\quad+bY_n\Delta W_n+cY_n\Delta \widetilde{N}_n.
    \end{aligned}


De aquí, factorizando el término Yn+1Y_{n+1} del lado izquierdo y el término YnY_n del lado derecho

(1−θΔt(a+λc))Yn+1=Yn+(1−θ)Δt(a+λc)Yn+bYnΔWn+cYnΔÑn=[1+(1−θ)Δt(a+λc)+bΔWn+cΔÑn]Yn.(5.5)
    \begin{aligned}
        (1-\theta\Delta t(a+\lambda c))Y_{n+1} & = Y_n +(1-\theta)\Delta t(a+\lambda c)Y_n\\ 
        & \qquad\quad +bY_n\Delta W_n+cY_n\Delta \widetilde{N}_n\\
        & = [1+(1-\theta)\Delta t(a+\lambda c)+b\Delta W_n+c\Delta\widetilde{N}_n]Y_n.
    \end{aligned}
 \qquad(5.5)

Dado que por hipótesis sabemos que l=2a+b2+λc(2+c)<0l=2a+b^2+\lambda c(2+c)<0, podemos notar

2a+b2+λc(2+c)=2a+2λc+b2+λc2=2(a+λc)+b2+λc2<0,
    \begin{aligned}
        2a+b^2+\lambda c(2+c) & =2a+2\lambda c+b^2+\lambda c^2\\ 
        & =2(a+\lambda c)+b^2+\lambda c^2<0,
    \end{aligned}


es claro que b2+λc2>0b^2+\lambda c^2>0, esto implica que (a+λc)<0(a+\lambda c)<0. Con esto, podemos afirmar que para Δt\Delta t lo suficientemente pequeño, el término 1−θΔt(a+λc)1-\theta\Delta t(a+\lambda c) no se anula y es positivo.

Por otro lado, veamos la esperanza del segundo momento de Equation 5.5. Elevando al cuadrado y obteniendo el valor esperado, tenemos

(1−θΔt(a+λc))2𝔼[|Yn+1|2]=𝔼[|1+(1−θ)Δt(a+λc)+bΔWn+cΔÑn|2]𝔼[|Yn|2].(5.6)
    \begin{aligned}
        (1-\theta\Delta t(a+\lambda c))^2\mathbb{E}[|Y_{n+1}|^2] & = \mathbb{E}\Bigg[\Bigg|1+(1-\theta)\Delta t(a+\lambda c)\\ 
        & \qquad\quad+b\Delta W_n+c\Delta \widetilde{N}_n\Bigg|^2\Bigg]\mathbb{E}[|Y_n|^2].
    \end{aligned}
 \qquad(5.6)

Vamos a desarrollar la esperanza del término estocástico. Para faciliatr el proceso, definimos la siguiente notación

A:=1+(1−θ)Δt(a+λc)B:=bΔWnC:=cΔÑn.
    \begin{aligned}
            A & := 1+(1-\theta)\Delta t(a+\lambda c)\\ 
            B & := b\Delta W_n\\ 
            C & := c\Delta \widetilde{N}_n.
    \end{aligned}


Notemos que AA es una constante determinista, mientras que BB y CC son variables aleatorias. Por tanto, aplicando la linealidad de la esperanza, el término estocástico de la Equation 5.6 queda de la forma

𝔼[|A+B+C|2]=𝔼[A2+B2+C2+2AB+2AC+2BC]=𝔼[A2]+𝔼[B2]+𝔼[C2]+𝔼[2AB]+𝔼[2AC]+𝔼[2BC].(5.7)
    \begin{aligned}
        \mathbb{E}[|A+B+C|^2] & = \mathbb{E}[A^2+B^2+C^2\\ 
        & \qquad +2AB+2AC+2BC]\\ 
        & = \mathbb{E}[A^2]+\mathbb{E}[B^2]+\mathbb{E}[C^2]\\ 
        & \qquad +\mathbb{E}[2AB]+\mathbb{E}[2AC]+\mathbb{E}[2BC].
    \end{aligned}
 \qquad(5.7)

Utilizando las propiedades de los incrementos independientes, podemos afirmar que 𝔼[B]=b𝔼[ΔWn]=0\mathbb{E}[B]=b\mathbb{E}[\Delta W_n]=0 y 𝔼[C]=c𝔼[ΔÑn]=0\mathbb{E}[C]=c\mathbb{E}[\Delta \widetilde{N}_n]=0. Además, 𝔼[2AB]=2Ab𝔼[ΔWn]=0\mathbb{E}[2AB]=2Ab\mathbb{E}[\Delta W_n]=0 y 𝔼[2AC]=2Ac𝔼[ΔÑn]=0\mathbb{E}[2AC]=2Ac\mathbb{E}[\Delta\widetilde{N}_n]=0. Luego, por la independiencia entre el movimiento browniano y el proceso de Poisson compensado, se cumple 𝔼[BC]=bc𝔼[ΔWnΔÑn]=bc𝔼[ΔWn]𝔼[ΔÑn]=0\mathbb{E}[BC]=bc\mathbb{E}[\Delta W_n\Delta\widetilde{N}_n]=bc\mathbb{E}[\Delta W_n]\mathbb{E}[\Delta\widetilde{N}_n]=0.

Por otro lado, 𝔼[B2]=b2𝔼[(Wn)2]=b2Δt\mathbb{E}[B^2]=b^2\mathbb{E}[(W_n)^2]=b^2\Delta t y 𝔼[C2]=c2𝔼[(Ñn)2]=c2λΔt\mathbb{E}[C^2]=c^2\mathbb{E}[(\widetilde{N}_n)^2]=c^2\lambda\Delta t. Por lo tanto, de la Equation 5.7 tenemos

𝔼[|A+B+C|2]=A2+b2Δt+λc2Δt=(1+(1−θ)Δt(a+λc))2+b2Δt+λc2Δt.
    \begin{aligned}
        \mathbb{E}[|A+B+C|^2] & = A^2+b^2\Delta t +\lambda c^2\Delta t\\ 
        & = (1+(1-\theta)\Delta t(a+\lambda c))^2 \\ 
        & \qquad +b^2\Delta t +\lambda c^2\Delta t.
    \end{aligned}


Sustituyendo esto en Equation 5.6 tenemos

(1−θΔt(a+λc))2𝔼[|Yn+1|2]=[(1+(1−θ)Δt(a+λc))2+b2Δt+λc2Δt]𝔼[|Yn|2].(5.8)
    \begin{aligned}
        (1-\theta\Delta t(a+\lambda c))^2\mathbb{E}[|Y_{n+1}|^2] & = \Bigg[(1+(1-\theta)\Delta t(a+\lambda c))^2 \\ 
        & \qquad + b^2\Delta t +\lambda c^2\Delta t\Bigg]\mathbb{E}[|Y_n|^2].
    \end{aligned}
 \qquad(5.8)

Notemos que la Equation 5.8 describe el cambio del segundo momento de la solución numérica. Ahora bien, para que el método sea estable en media cuadrática, es necesario que la sucesión 𝔼[|Yn|2]\mathbb{E}[|Y_n|^2] sea decreciente y tienda a cero cuando nn tiende a infinito. Esto ocurre si y solo si

(1+(1−θ)Δt(a+λc))2+b2Δt+λc2Δt(1−θΔt(a+λc))2<1(5.9)
    \frac{(1+(1-\theta)\Delta t(a+\lambda c))^2+b^2\Delta t +\lambda c^2\Delta t}{(1-\theta\Delta t(a+\lambda c))^2}<1
 \qquad(5.9)

Recordemos que anteriormente ya se mencionó que el término 1−θΔt(a+λc)1-\theta\Delta t(a+\lambda c) es no nulo y positivo, por lo que es posible multiplicar la Equation 5.9 por el denominador y seguir conservando la desigualdad, es decir

(1+(1−θ)Δt(a+λc))2+b2Δt+λc2Δt<(1−θΔt(a+λc))2(5.10)
    (1+(1-\theta)\Delta t(a+\lambda c))^2+b^2\Delta t +\lambda c^2\Delta t<(1-\theta\Delta t(a+\lambda c))^2
 \qquad(5.10)

Para facilitar la notación, definimos la variable K:=a+λcK:=a+\lambda c. Además, expandiendo la expresión del lado derecho de la desigualdad de la forma

(1−θΔt(a+λc))2=(1−θΔtK)2=1−2θΔtk+θ2Δt2K2.
    \begin{aligned}
        (1-\theta\Delta t(a+\lambda c))^2 & =(1-\theta\Delta tK)^2\\ 
        & = 1-2\theta\Delta t k+\theta^2\Delta t^2K^2.
    \end{aligned} 


De igual forma, al extender el término al cuadrado del lado izquierdo de la Equation 5.10

(1+(1−θ)Δt(a+λc))2=(1+(1−θ)ΔtK)2=1+2(1−θ)ΔtK+(1−θ)2Δt2K2.
    \begin{aligned}
        (1+(1-\theta)\Delta t (a+\lambda c))^2 & = (1+(1-\theta)\Delta t K)^2\\ 
        & = 1+2(1-\theta)\Delta t K+(1-\theta)^2\Delta t^2 K^2.
    \end{aligned}


De esta manera, ordenando los terminos, la Equation 5.10 se expresa como se sigue

1+2(1−θ)ΔtK+b2Δt+λc2Δt+(1−θ)2Δt2K2<1−2θΔtK+θ2Δt2K2.(5.11)
    \begin{aligned}
        1 & +2(1-\theta)\Delta t K +b^2\Delta t \\ 
          & \qquad +\lambda c^2\Delta t+(1-\theta)^2\Delta t^2 K^2<1-2\theta\Delta t K+\theta^2\Delta t^2 K^2.
    \end{aligned}
 \qquad(5.11)

Restando el termino 11 en ambos lados de la desigualdad, además reordenando adecuadamente y agrupando los términos con factores Δt\Delta t y Δt2\Delta t^2, tenemos

−2θKΔt−2(1−θ)KΔt−b2Δt−λc2Δt+θ2K2Δt2−(1−θ)2K2Δt2>0(−2θK−2(1−θ)K−b2−λc2)Δt+(θ2−(1−θ)2)K2Δt2>0(−2θK−2K+2θK−b2−λc2)Δt+(θ2−(1−2θ+θ2))K2Δt2>0(−2K−b2−λc2)Δt+(2θ−1)K2Δt2>0(2θ−1)Δt2K2−(2K+b2+λc2)Δt>0.(5.12)
    \begin{aligned}
        & -2\theta K\Delta t -2(1-\theta)K\Delta t-b^2\Delta t \\
        & \qquad\quad-\lambda c^2\Delta t+\theta^2 K^2\Delta t^2-(1-\theta)^2 K^2\Delta t^2>0\\ 
        & (-2\theta K-2(1-\theta)K-b^2-\lambda c^2)\Delta t\\ 
        & \qquad\quad+ (\theta^2-(1-\theta)^2)K^2\Delta t^2>0\\ 
        & (-2\theta K-2K+2\theta K-b^2-\lambda c^2)\Delta t \\ 
        & \qquad\quad+(\theta^2-(1-2\theta+\theta^2))K^2\Delta t^2>0\\ 
        &(-2K-b^2-\lambda c^2)\Delta t +(2\theta-1)K^2\Delta t^2>0\\ 
        & (2\theta-1)\Delta t^2 K^2-(2K+b^2+\lambda c^2)\Delta t>0. 
    \end{aligned}
 \qquad(5.12)

Del parámetro de establilidad ll, notemos

l=2a+b2+λc(2+c)=2a+b2+2λc+λc2=2a+2λc+b2+λc2=2(a+λc)+b2+λc2=2K+b2+λc2.
    \begin{aligned}
        l & = 2a+b^2+\lambda c(2+c) \\ 
        & = 2a+b^2+2\lambda c+\lambda c^2\\ 
        & = 2a+2\lambda c+b^2+\lambda c^2\\ 
        & = 2(a+\lambda c)+b^2+\lambda c^2\\ 
        & = 2K +b^2+\lambda c^2.
    \end{aligned}


Por lo tanto, sustituyendo ll en Equation 5.11 se tiene

(2θ−1)Δt2K2−lΔt>0
    (2\theta-1)\Delta t^2 K^2-l\Delta t>0


Dado que Δt>0\Delta t>0, es posible factorizar un término de la forma

Δt[(2θ−1)ΔtK2−l]>0,
    \Delta t[(2\theta-1)\Delta t K^2-l]>0,


más aún

(2θ−1)ΔtK2−l>0.
    (2\theta-1)\Delta t K^2-l>0.


Despejando de tal forma que podamos expresar la desigualdad anterior en términos de −l-l tenemos

−l>−(2θ−1)(a+λc)2Δt=(1−2θ)(a+λc)2Δt(5.13)
-l >-(2\theta-1)(a+\lambda c)^2\Delta t= (1-2\theta)(a+\lambda c)^2\Delta t
 \qquad(5.13)

Cuando θ=12\displaystyle\theta=\frac{1}{2}, esto implica 1−2θ=01-2\theta=0, así

0=(1−2θ)(a+λc)2Δt<−l
    0= (1-2\theta)(a+\lambda c)^2\Delta t<-l


Por hipotesis l<0l<0, de aqui 0<−l0<-l. Por lo tanto, el método es estable cuando θ=12\displaystyle\theta=\frac{1}{2}.

Luego, cuando 12<θ≤1\displaystyle \frac{1}{2}<\theta\leq 1, esto implica que 1−2θ<01-2\theta<0. Para este caso (1−2θ)(a+λc)2Δt<0(1-2\theta)(a+\lambda c)^2\Delta t<0, de igual forma −l>0-l>0, entonces

(1−2θ)(a+λc)2Δt<0<−l,
    (1-2\theta)(a+\lambda c)^2\Delta t<0<-l,


en consecuencia, el método sigue siendo estable bajo las condiciones de la solución análitica.

Por último, para el caso 0≤θ<12\displaystyle 0\leq \theta<\frac{1}{2}, esto implica, (1−2θ)(a+λc)2>0(1-2\theta)(a+\lambda c)^2>0, por lo que la Equation 5.13 se cumple si y solo si

Δt<−l(1−2θ)(a+λc)2.
    \Delta t <\frac{-l}{(1-2\theta)(a+\lambda c)^2}.
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